

2, 3, 6-トリメチルフェノールのラット における28日間反復経口投与 毒性試験(回復14日間)

厚生省生活衛生局 委託

財団法人食品薬品安全センター 秦 野 研 究 所

			貝
要		約	1
緒		吉	4
方		法	5
1		被験物質および投与検体の調製	5
2		動物および飼育方法	5
3	١.	投与用量および群分け	6
4		投与方法	7
5		検査項目	7
6	.	統計処理法	10
結		果	11
1		死亡例および一般状態	11
2		体重	11
3	3.	摂餌量	11
4		尿検査	12
5		血液学的検査	12
6) .	血液生化学的検査	12
7		病理学的検査	12
考		察	16
Fig.			18
Tab	le		20
Pho	to		56
App	end	1ix	60

- 2,3,6-トリメチルフェノール(以下、TP)の28日間反復経口投与毒性試験(回復14日間)を雌雄の Sprague-Dawley 系(Crj:CD)ラットを用いて実施した。投与量は、雌雄ともの(溶媒対照群)、100、300 および 1000 mg/kg とした。供試例数は、雌雄とも溶媒対照群および 1000 mg/kg 投与群では10匹/群、100 および 300 mg/kg 投与群では5匹/群とした。このうち溶媒対照群の雌雄各5匹および 1000 mg/kg 投与群の雄5匹ならびに雌4匹について14日間の回復試験を行った。その結果を以下に示す。
- 1. 投与第1および2週に、1000 mg/kg 投与群の雌各1例が死亡した。この2例は、共に投与直後に著明な歩行失調を示した後死亡したが、剖検の結果、いずれも胸腔内に油 状物の貯留が認められ、1例には食道壁の穿孔が認められた。従って、これらの死因は 誤投与であると考えられる。
- 2. 被験物質の投与に起因すると考えられる一般状態の変化として、1000 mg/kg 投与群の雄 6 例および雌 9 例に、腹臥ないし歩行失調が、投与第 1 ~ 4 週の投与後の観察において繰り返し散見された。この変化は、死亡例を除き所見を認めた翌日の投与前までには消失していた。また、300 および 1000 mg/kg 投与群の雌雄には、投与直後に一過性の流涎が観察されたが、本所見は投与刺激による反射により生じたものであり、毒性変化ではないと判断した。回復試験期間中には、いずれの投与群においても一般状態の変化は全く認められなかった。
- 3. 投与第4および8日には 1000 mg/kg 投与群の雌で、投与第25および28日には同群の雄で、体重の有意な低値が認められた。また、投与第4および8日には、300 mg/kg 投与群の雌に体重増加の抑制傾向が認められた。
- 4. 投与第1日には、1000 mg/kg 投与群の雌雄で、また、投与第8日には 300 mg/kg 投与群の雌で、摂餌量が減少した。

- 5. 投与期間終了週に実施した尿検査では、1000 mg/kg 投与群の雄で、尿量の有意な増加および尿比重の有意な減少ならびに黄色化の傾向が認められた。尿比重の減少は、300 mg/kg 投与群の雄でも認められた。1000 mg/kg 投与群の雌では、尿の黄色化が全例にみられたほか、尿中蛋白、ビリルビンおよびウロビリノーゲン量の増加傾向が認められた。回復試験期間終了週の尿検査では、著変は認められなかった。
- 6. 投与期間終了時の血液学的検査では、1000 mg/kg 投与群の雌で赤血球数、血色素量 およびヘマトクリット値の有意な減少が認められた。回復試験期間終了時の検査では、 雄の 1000 mg/kg 投与群で平均赤血球容積および平均赤血球血色素量が有意に減少した。
- 7. 投与期間終了時の血液生化学的検査では、雄の 300 および 1000 mg/kg 投与群において無機リン濃度が有意に増加し、1000 mg/kg 投与群においてアルブミン濃度が有意に減少した。回復試験期間終了時の血液生化学的検査では著変は認められなかった。
- 8. 投与期間終了時屠殺例では、雄の 300 および 1000 mg/kg 投与群において副腎の絶対重量が有意に減少し、雌の 1000 mg/kg 投与群において脾臓の絶対重量および相対重量ならびに肝臓の相対重量が有意に増加した。

雌の 1000 mg/kg 投与群の脾臓に認められた相対重量の有意な増加は、回復試験期間 終了時屠殺例においてもみられた。

9. 投与期間終了時屠殺例の病理学的検査では、1000 mg/kg 投与群の雌雄の肝臓において、くもり硝子状変化を伴った小葉中心性の肝細胞肥大が散見され、その発現頻度は雄で有意に増加した。同群雌雄の脾臓では、静脈洞拡張(発生例数および程度に有意差あり)およびヘモジデリン沈着(雌では程度に有意差あり)が著しく、雌では髄外造血の亢進程度が有意に増加した。また、同群雌雄の全例において、前胃の扁平上皮にびまん性過形成が認められ、雄1例に腺胃のびらんがみられた。

回復試験期間終了時屠殺例では、上記の肝臓および胃に認められた変化ならびに雌の 髄外造血の亢進は、消失ないし軽減した。脾臓のヘモジデリン沈着は、1000 mg/kg 投与群の雌雄において、溶媒対照群より著明であった。 以上のように、雌雄ラットにTPを 1000 mg/kg の用量で28日間反復投与することによって、主として一過性の歩行失調、体重増加抑制、摂餌量の減少および前胃上皮のびまん性過形成が認められたほか、溶血および肝臓の薬物代謝酵素誘導を示唆する変化がみられた。これらの変化は、300 mg/kg 投与群の雄では認められなかった。300 mg/kg 投与群の雌では、摂餌量の有意な減少および体重の増加抑制傾向が認められた。これらの変化は、100 mg/kg 投与群では認められなかった。また、300 および 1000 mg/kg 投与群の雌雄には、投与直後に一過性の流涎が観察され、この所見は 100 mg/kg 投与群の雌雄には認められなかった。従って、本試験条件下におけるTPの無影響量は、雌雄とも 100 mg/kg であると判断される。なお、今回の試験条件下で認められた毒性変化は、2週間の休薬により概ね消失した。

「OBCD 既存化学物質の安全性点検に係る毒性調査」事業の一環として、2,3,6-トリメチルフェノールのラットにおける28日間反復投与毒性試験(回復14日間)を実施した。

なお、本試験は、昭和61年12月5日付、環保業第700号、薬発第1039号、61基局第1014 号通達「ほ乳類を用いる28日間の反復投与毒性試験」(化審法ガイドライン)および化学 物質 GLP(昭和59年3月31日、環保業第39号、薬発第229号、59基局第85号、改訂昭和63 年11月18日、環企研第233号、衛生第38号、63基局第823号)に従って実施した。

1. 被験物質および投与検体の調製

被験物質として、

より提供された 2,3,6-トリメチル

フェノール(以下、TP) 〔英名: 2, 3, 6-Trimethylphenol、CAS No. 2416-94-6、ロット番号: 性状: 白色固体、純度 99.67 wt %、不純物: 2, 4, 6-トリメチルフェノール 0.08 %、2,5-キシレノール 0.05 %、分子量:136.19、分子式: $C_9H_{12}O$ 、融点(凝固点):62 $^{\circ}$ 、沸点: 226 $^{\circ}$ 、比重: 0.963(80 $^{\circ}$)〕を用いた。TPは、入手後試験開始までは食品薬品安全センター秦野研究所被験物質保管室内または検体調製室で、試験期間中は検体調製室で、室温・遮光下にて保管した。

投与検体の調製に際して、被験物質を20、6、2%(w/v)の各濃度になるように、コーンオイル (ロット番号: V7R2020、ナカライテスク(株)を媒体として加えた後、加温(約60℃で水浴)溶解した。これをガラス容器に分注し、投与時まで室温・遮光下にて保管した。投与検体の調製は7日間に1回の頻度で行った。なお、秦野研究所において実施したTPの安定性試験(同被験物質における急性毒性試験、A-97-038にて実施)の結果、0.2 および20%(w/v) コーンオイル溶液中の被験物質は、室温・遮光の条件で8日間は安定であり(Appendix 11-1)、また、初回に調製した投与検体中の被験物質含量は、所定濃度の99.5~103%であることが確認された(Appendix 11-2)。

2. 動物および飼育方法

生後 4 週で購入した雌雄の Sprague-Dawley 系ラット (Crj:CD; SPF、日本チャールス・リバー(株)、厚木飼育センター生産) (注1)を 6 日間にわたり予備飼育した後、一般状態に異常の認められなかった雌雄各30匹を試験に供した(注2)。動物は、全飼育期間を通

(注1)動物入荷日: 1998年2月25日

入 荷 匹 数 : 雄; 33匹、雌; 33匹

入 荷 時 体 重 : 雄; 70.5~79.6 g (平均 75.7g)

雌; 69.7~77.9 g (平均 73.0g)

(注2) 投 与 開 始 日 : 1998年3月3日(雌·雄)

投与開始時体重 : 雄; 123.2~138.5 g (平均 131.4 g)

雌; 116.6~127.8 g (平均 122.1 g)

じて、基準温度 24 ± 1 °C、基準湿度 $50\sim65\%$ 、換気回数約15回/時間、照明時間12時間($7\sim19$ 時点灯)の飼育室内で、金属製金網床ケージ($220\times270\times190$ mm)に1 匹ずつ収容し、固型飼料(CE-2、日本クレア(株)および水道水(秦野市水道局給水)を自由に摂取させて飼育した。

飼育期間中、飼育室の温湿度の実測値は、空調機の定期点検洗浄作業等による2時間以内の逸脱を除いて許容範囲内にあった(注3)。また、供給した飼料および水には試験に支障を来す可能性のある混入物はなかった。

なお、各動物の耳介に耳パンチを用いて一連の個体番号を標識し、また、各群ごとに色の異なる動物カードに試験計画番号、性、群および動物番号を記入して飼育ケージに掛け、個体識別の補助とした。

3. 投与用量および群分け

本試験における投与用量は、秦野研究所で実施した予備試験(C-97-012)の成績を参考に決定した。予備試験では、雌雄の Sprague-Dawley 系ラットにTPを 40、200 あるいは 1000 mg/kg の用量で7日間反復経口投与した。その結果、1000 mg/kg 投与群の雄では、初回投与後に、一過性に全身性の衰弱が観察された。また、同群の雌雄では体重の増加抑制傾向が認められた他、投与期間終了時の剖検所見として、前胃の潰瘍もしくはその修復像を示唆する変化が散見された。40 および 200 mg/kg 投与群では、雌雄共に明らかな毒性は認められなかった。

よって、化審法ガイドライン「ほ乳類を用いる28日間の反復投与毒性試験」に従い、本試験における用量は、雌雄とも確実中毒量である 1000 mg/kg を最高用量とし、以下を公比約3で除して 300 mg/kg および 100 mg/kg 投与群を設定した。また、雌雄とも溶媒(コーンオイル) 対照群を設定した。

群分けは、投与開始前日の体重に基づいて、体重別層化無作為抽出法により行った。各群の匹数および動物番号を次頁に示した。雌雄の溶媒対照群および雄の 1000 mg/kg 投与群の各動物番号の若い方から5 匹ならびに雌の 1000 mg/kg 投与群の4 匹(No. 52、53、54、55) は、投与期間終了後、14日間の回復試験に用いた。

(注3)動物飼育期間中の温湿度の実測値 温度 23.0~26.0℃湿度 46~63%

11.	机片阜	机上次目	動物	勿番号
群	投与量 (mg/kg)	投与容量 (mL/kg)	雄	雌
溶媒対照群(コーンオイル) 低用量群 中用量群 高用量群	0 100 300 1000	5 5 5 5	1~10 11~15 16~20 21~30	31~40 41~45 46~50 51~60

4. 投与方法

本試験の投与経路は、化審法ガイドライン「ほ乳類を用いる28日間の反復投与毒性試験」 に従い強制経口投与とした。

1日1回、28日間、ラット用胃管を用いて投与し、投与容量は、雌雄とも5mL/kg として、各投与時の最近時の体重を基に個別に算出した。

5. 検査項目

1) 一般状態の観察

投与期間および回復試験期間を通じて、死亡例の有無を調べたほか、全生存例について、 投与期間中は毎日投与前および投与後の2回(回復試験期間中は1回)、一般状態を観察 した。

2) 体重および摂餌量の測定

投与開始週では、投与開始直前と投与第4日、第2週以降の投与期間および回復試験期間中は、生存例全例について1週に2回の頻度で体重を測定し、投与期間あるいは回復試験期間終了日、剖検日および死亡時にも体重の測定を行った。また、投与開始週では、投与開始日に、第2週以降の投与期間および回復試験期間中は、生存例全例について1週に1回の頻度で1日当たりの摂餌量の測定を行った。

3) 尿検査

投与期間終了週(投与第23日)に各群とも動物番号の若い方から5匹を選択し、また回復試験期間終了週(回復第9日)には回復試験例全例を、いずれも約24時間代謝ケージに収容して採尿し、次頁の項目について検査した。なお、pH、潜血、蛋白、糖、ケトン体、

ビリルビン、ウロビリノーゲン、色調、混濁度および尿沈渣の検査には、代謝ケージに収容して採取した新鮮尿を用いた。

項目	使	用	機	器
尿量 色調,混濁度	計量	天秤		
比重 pH,潜血,蛋白,糖,	重量法	天秤		
pm, 僧皿, 虽白, 幅, ケトン体, ビリルビン, ウロビリノーゲン	試験紙法	クリニテッ	ク200+ (2	ベイエル三共)
沈渣	鏡検	光学顕微鏡		

4)血液学的検査

投与期間終了時および回復試験期間終了時の剖検に先立ち、全例について、約18ないし24時間絶食させたのち、ペントバルビタールナトリウム麻酔下で腹部後大静脈よりEDTA-2Kを抗凝固剤として採血し、以下の項目について検査した。なお、プロトロンビン時間および活性部分トロンボプラスチン時間の測定には、クエン酸ナトリウムを抗凝固剤として採血した血液を用いた。

項目	測 定 法	使用機器
赤血球数(RBC)	自動(電気抵抗法)	Coulter Counter Model S- PLUS IV (コールター エレクトロニクス)
白血球数(WBC) 血色素量(Hb) 平均赤血球容積(MCV) 血小板数	〃(〃) 自動(吸光度法) 〃(電気抵抗法) 〃(電気抵抗法)	11 LUG TV (3 N)
ヘマトクリット値(Ht) 平均赤血球血色素量(MCH) 平均赤血球血色素濃度(MCHC) 白血球分類	計算(0.001 ×RBC×MCV) "(1000×Hb/RBC) "(100×Hb/Ht) 視算(静脈血塗抹標本,	光学顕微鏡
網状赤血球比率 プロトロンビン時間(PT) 活性部分トロンポアラスチン時間(APTT	Wright-Giemsa 染色) Brecher 法 光散乱検出法)光散乱検出法	光学顕微鏡 CA-1000(東亜医用電子) "

5)血液生化学的検査

前述の血液学的検査のための採血に引き続き、ヘパリンを抗凝固剤として採血し、それ ぞれ血漿を分離して次頁の項目について検査を行った。

項	目	測	定	法	使用機器
総蛋白濃	搜度	ビウレ	ット法		遠心方式生化学自動分析装置 COBAS-FARA(ロシュ)
アルブミ		BCG 法			CODAS-FARA (D) I) " "
ブドウ糖	、テロール濃度 E濃度	COD • D.	ゼ G6PD	H 法	"
尿素窒素 クレアチ	注濃度 (BUN) ニン濃度	ウレアーゼ Jaffé	Gℓ.DH 法(Rat	法 e)	// //
アルカリフォス GOT 活性	ファターぜ活性(ALP)	GSCC法 IFCC法			// //
GPT 活性 LDH 活性	<u> </u>	Wróble		n Duo	<i>"</i> 注 <i>"</i>
カルシウ	′ム濃度	OCPC法			14
トリグリセライ		GPO • D	AOS法		"
γ - GTP	冶性	γ ーグルタ 4-ニトロア	ミルー3ーカ ニリト基質	ルボキシー 重法	"
A/G 比 ナトリウ	ッム濃度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	計算 イオン	電極法		全自動電解質分析装置EA05(A&T)
カリウム塩素濃度	濃度	"			"

6) 病理学的検査

上記の採血に引き続き、必要に応じて腋窩動脈を切断して放血屠殺したのち、器官および組織の肉眼的観察を行った。また、各動物の脳、胸腺、心臓、肝臓、腎臓、脾臓、副腎、卵巣または精巣、精巣上体の重量測定を行い、各器官重量を剖検日の体重で除して、それぞれの相対重量を算出した。さらに、脳、脊髄、下垂体、眼球、ハーダー腺、甲状腺(上皮小体を含む)、顎下腺(舌下腺を含む)、胸腺、心臓、肺、肝臓、腎臓、脾臓、膵臓、副腎、胃、十二指腸、空腸、回腸、結腸、直腸、卵巣または精巣、精嚢、精巣上体、膀胱、前立腺、大腿骨骨髄、坐骨神経、下腿部骨格筋および病変部は、0.1 M リン酸緩衝10%ホルマリン液(pH 7.2)で固定した。病理組織学的検査には、脳、脊髄、胸腺、心臓、肝臓、腎臓、脾臓、副腎、胃、回腸、膀胱、大腿骨骨髄、坐骨神経のほか、病変部(肺、皮膚)をパラフィン包埋後、ヘマトキシリン・エオジン染色標本を作製し、組織学的検査を実施した。また、組織学的検査の結果、1000 mg/kg 投与群では雌雄ともに脾臓の褐色色素沈着増加が認められた。よって、この沈着物の性格を明らかにする目的で全例についてベルリンブルー染色を実施した。投与期間中の死亡例についても、上記と同様の検査(器官重量測定を除く)を実施した。回復試験期間終了時の剖検例については、肝臓、脾臓、胃および病変部(肺)の組織学的検査を実施した。

6. 統計処理法

体重、摂餌量、半定量検査を除く尿検査および定期解剖例の血液学的検査、血液生化学的検査ならびに器官重量の値について、各群ごとに平均値および標準偏差を求めた。また、試験群の構成が溶媒対照群を含め3群以上ある場合は、Bartlett の方法による分散の一様性の検定(有意水準:5%)を行い、ついで、分散が一様な場合は、一元配置型の分散分析を行い、有意(有意水準:5%)の時は Dunnett の方法で多重比較を行った。一方、分散が一様でない場合は Kruskal-Wallis の順位検定を行い、有意(有意水準:5%)ならば Dunnett 型の検定法で多重比較を行った。また、試験群が溶媒対照群を含め2群となる場合には、溶媒対照群と被験物質投与群の各平均値の差の検定は、等分散であれば Student のt検定、不等分散であれば Aspin-Welch のt検定を行った。さらに、病理組織学的検査所見については、グレード分けしたデータは Mann-Whitney U検定(両側検定)により、また、陽性グレードの合計値は Fisher 直接確率の片側検定により、溶媒対照群および被験物質投与群との間の有意差検定を行った(有意水準:5%)。

1. 死亡例および一般状態 (Table 1-1 ~1-2, Appendix 1-1~1-2) 1000 mg/kg 投与群の雌 2 例が、投与第 3 および 9 日に死亡した。

一般状態の変化として、雌雄の 1000 mg/kg 投与群には、投与期間中に腹臥位または歩行失調を示す例が観察された。この変化は、いずれも投与後の観察において散見され、死亡例を除き変化を認めた翌日の投与前には消失する一過性のものであった。この変化は、しばしば繰り返し観察され、その例数は、雄では第 $1\sim4$ 週まで各 ϕ 3、2、4、2 例 (延べ6例)、雌では、各 ϕ 6、4、2、6 例 (延べ9例)であった。

また、雌雄の 300 および 1000 mg/kg 投与群には、投与直後の一過性流涎が認められた。この変化は、雌雄とも 1000 mg/kg 投与群の方がより早期且つ高頻度に認められ、同群では、雌1例(投与第3日死亡)を除いて全例に観察された。また、投与直前の保定時から流涎を生じた例も散見された。

その他には、投与第3週から投与期間終了時屠殺まで、溶媒対照群および 300 mg/kg の雌各1例に、体表の脱毛が認められた。

回復試験期間中の観察では、全例において変化はみられなかった。

2. 体重 (Fig. 1, Table 2-1, 2-2, Appendix 2-1~2-2)

投与期間中は、1000 mg/kg 投与群では雌雄ともに、溶媒対照群と比較して体重増加抑制の傾向がみられ、雄では第25および28日に、雌では第4および8日に各々有意な低値が認められた。また、300 mg/kg 投与群の雌では、投与第4および8日に体重増加の抑制傾向がみられた(統計学的有意差はなし)。

回復試験期間中には、1000 mg/kg 投与群の雌では全測定値が有意な低値を示したが、 同群の雄では、差は認められなかった。

3. 摂餌量 (Fig. 2, Table 3-1, 3-2, Appendix 3-1~3-2)

雌雄の 1000 mg/kg 投与群において、投与第1日に有意な減少が認められたほか、雌の 300 mg/kg 投与群では、投与第8日に有意な減少が認められた。

4. 尿検査 (Table 4-1~4-2, Appendix 4-1-1~4-2-2)

投与期間終了週の検査では、1000 mg/kg 投与群の雄 3 例および雌全例において尿の黄色化がみられた。また、同群の雄では、尿量の有意な増加および尿比重の有意な減少が認められた。尿比重の有意な減少は、雄の 300 mg/kg 投与群においても認められた。1000 mg/kg 投与群の雌では、尿中蛋白、ビリルビンおよびウロビリノーゲン量の増加傾向が認められた。

回復試験期間終了週の検査では、雌の 1000 mg/kg 投与群の尿中蛋白量の増加は軽減され、その他も概ね消失した。

5. 血液学的検査(Table 5-1-1~5-2-2, Appendix 5-1-1~5-2-2)

投与期間終了時の検査では、1000 mg/kg 投与群の雌に赤血球数、血色素量およびヘマトクリット値の有意な減少が認められた。また、同群の雌雄各2例ずつ(雄;No.26,30、雌;No.59,60)に、多染性赤血球の増加が観察されたほか、雌では網状赤血球比率が増加する傾向があった(統計学的有意差なし)。

回復試験期間終了時の検査では、1000 mg/kg 投与群の雄で、平均赤血球血色素量および平均赤血球容積の有意な減少が認められた。

6. 血液生化学的検査(Table 6-1-1~6-2-2, Appendix 6-1-1~6-2-2)

投与期間終了時の血液生化学的検査では、雄の 300 および 1000 mg/kg 投与群において無機リン濃度が有意に増加し、1000 mg/kg 投与群においてアルブミン濃度が有意に減少した。その他にも有意差を示した項目があったが、被験物質の用量に依存した変化ではなかった。

回復試験期間終了時の検査では、上記変化はいずれも消失した。また、投与期間終了時 に変化を示さなかった項目において、有意差を生じた項目が散見された。

7. 病理学的検査

1) 器官重量(Table 7-1-1~8-2-2,Appendix 7-1-1~8-2-2)

投与期間終了時屠殺例では、雄の 300 および 1000 mg/kg 投与群において副腎の絶対 重量が有意に減少し、雌の 1000 mg/kg 投与群において脾臓の絶対重量および相対重量な らびに肝臓の相対重量が有意に増加した。また、体重が低値を示した雄の 1000 mg/kg 投与群において、脳および精巣の相対重量が有意に増加した。

回復試験期間終了時屠殺例では、雌の 1000 mg/kg 投与群の脾臓の相対重量の有意な増加は認められたが、その他の変化は、概ね消失していた。また、その他にも統計学的に有意差を生じた項目が散見されたが、いずれも投与期間終了時に認められた変化ではなかった。

2) 剖検所見(Table 9-1-1~9-3, Appendix 9-1-1~9-3)

投与期間終了時屠殺例では、1000 mg/kg 投与群の雄 1 例の前胃粘膜に水腫がみられた。 また、300 mg/kg 投与群の雄 1 例の胸腔内に、投与検体と思われる白色の物質が認められ た。その他、被験物質投与群では、肺・気管支に暗色点、暗赤色点や白色領域、肝臓に淡 色点、副腎に暗色点、卵巣嚢の拡張、皮膚に貧毛および痂皮形成がみられたが、被験物質 投与との関連は明らかではなかった。

回復試験期間終了時屠殺例では、溶媒対照群および 1000 mg/kg 投与群の雄の肺に暗色 点がみられた他に異常はなかった。

投与第3日に死亡した 1000 mg/kg 投与群の雌1例には、胸腔内に透明な油状の液体が 貯留しており、少量の凝血塊がみられた。食道では、肺門部付近の外膜に出血がみられ、 横隔膜付近の食道壁に穿孔が認められた。肺には暗色調領域があり、口周囲の皮膚には液 体が付着していた。

投与第9日に死亡した 1000 mg/kg 投与群の雌1例には、胸腔内に油状物を含む液体が 貯留しており、肺は暗色調を呈していた。脾臓および腺胃粘膜は淡色で、左側腎臓は低形 成と思われ著しく小型であった。口周囲の皮膚には液体が付着しており、右側前肢には赤 色部が認められた。

- 3) 病理組織学的所見(Table 10-1-1~10-3, Appendix 10-1-1~10-3)
- i) 投与期間終了時屠殺例

(心臓)

溶媒対照群の雄2例、雌1例に心筋変性がみられたが、1000 mg/kg 投与群には異常は 観察されなかった。

(肝臓)

1000 mg/kg 投与群の雄 4 例、雌 1 例に小葉中心性肝細胞肥大がみられ、細胞質はややくもり硝子状を示した(Photo 1, 2)。1000 mg/kg 投与群の雄では肝細胞肥大の発現頻度に有意な増加が認められた。その他、門脈周囲性の脂肪化がみられたが、溶媒対照群と被験物質投与群との間に発現頻度および程度の差はなく、100 mg/kg 投与群の雌 1 例に限局性の脂肪化がみられたが、他の群には認められなかった。

(脾臓)

1000 mg/kg 投与群の雌雄では、溶媒対照群よりヘモジデリン沈着が増加し、静脈洞の拡張がみられた。(Photo 3, 4)。統計学的には、同群の雌雄においてヘモジデリン沈着の程度および静脈洞拡張の発現頻度ならびに程度が、同群の雌において髄外造血(Photo 5, 6)の程度が各々溶媒対照群より有意に増加した。

(腎臓)

溶媒対照群および 1000 mg/kg 投与群の雌雄では、皮質に好塩基性尿細管がみられ、雄では eosinophilic body がみられたが、両群間に発現頻度および程度の差はなかった。その他、溶媒対照群の雄1例に嚢胞がみられ、同群の雌1例の皮髄境界部に鉱質沈着が認められた。

(胃)

1000 mg/kg 投与群の雌雄全例の前胃に扁平上皮のびまん性過形成がみられ、程度および発現頻度が有意差を示した(Photo 7, 8)。その他、同群の雄1例の腺胃にびらんがみられた。

(肉眼的病変部)

肺の暗色点:いずれの例にも出血がみられたが、軽度ないしごく軽度な変化であった。 肺の淡色領域:泡沫細胞の集簇がみられた。

胸腔内白色物質を有した例の肺:胸膜に異物肉芽種が認められた。

皮膚の脱毛・貧毛、痂皮:潰瘍と痂皮および再生に伴うと思われる上皮細胞の過形成が みられた。

(その他)

脳、脊髄、胸腺、膀胱、副腎、回腸、坐骨神経および大腿骨骨髄には、1000 mg/kg 投

与群の雌雄に異常は認められなかった。

ii)回復試験期間終了時屠殺例

(肝臓)

投与期間終了時屠殺例にみられた肝細胞肥大は認められなかった。その他、門脈周囲性の脂肪化がみられたが、溶媒対照群と 1000 mg/kg 投与群との間に程度および頻度の差はなかった。

(脾臟)

1000 mg/kg 投与群の雌雄ではヘモジデリン沈着が増強しており、雄ではその程度が有意な増加を示した。また、同群の雄1例に静脈洞の拡張がみられた。全例に髄外造血がみられたが、雌雄とも溶媒対照群との間に程度の差はなかった。

(胃)

1000 mg/kg 投与群の雌1例の前胃に扁平上皮のびまん性過形成がみられた他には、異常はみられなかった。

(肺)

1000 mg/kg 投与群の雄2例および溶媒対照群の雄1例に軽度の出血がみられた。

iii) 投与期間中死亡例

(動物番号 51、投与第3日死亡)

食道に穿孔と食道粘膜下織および外膜に出血が認められた。その他、脾臓では髄外造血があり、腎臓では皮質に好塩基性尿細管がみられた。その他の器官・組織には異常は認められなかった。

(動物番号 56、投与第9日死亡)

前胃に扁平上皮の限局性過形成がみられた。脾臓では、髄外造血とヘモジデリン沈着が認められ、腎臓では、左側に低形成と皮質の好塩基性尿細管がみられ、皮膚では痂皮と潰瘍が認められた。その他の器官・組織には異常は認められなかった。

TPの 100、300 または 1000 mg/kg を、雌雄の Sprague-Dawley 系 (Crj:CD) ラットに 1日1回、28日間にわたって反復経口投与した。

その結果、1000 mg/kg 投与群の雌雄には、投与第1~4週の間に、投与後に一過性の歩行失調が頻発した。この変化は、同被験物質の急性毒性試験(A-97-038)における一般状態でも認められた変化と同様であり、TP投与に惹起された毒性症状であると考えられる。しかしながら、この変化との関連を示唆する他の変化は全検査項目において認められず、本所見の発現機序は明らかではない。

投与第1週または2週に死亡した 1000 mg/kg 投与群の雌2例は、いずれも投与後に上記毒性症状を示した後、その回復をみせずに死亡した。剖検の結果、ともに胸腔内に油状物の貯留が認められ、1例には食道壁の穿孔が認められた。従って、これらの死因は誤投与であると考えられる。

被験物質による全身性の毒性として、1000 mg/kg 投与群の雌雄では、投与期間中に体重増加の抑制が認められた。同群では、投与初期に摂餌量が減少している。従って、被験物質投与による摂餌量の減少が体重増加抑制の原因であると考えられる。摂餌量の減少は、300 mg/kg 投与群の雌でも認められ(投与第8日)、その日の体重は、有意差はなかったものの低値を示したため、この変化は被験物質投与の影響であると推察される。1000 mg/kg 投与群の雌では、回復期間中は一貫して体重が有意な低値を示したが、加齢とともに増加しており、投与期間中の発育遅延により溶媒対照群との差を有したまま推移したと考えられる。

1000 mg/kg 投与群の雌では、赤血球数、血色素量およびヘマトクリット値の減少、尿中ウロビリノーゲンの増加傾向、脾臓の重量増加および髄外造血亢進、静脈洞拡張およびヘモジデリン沈着などがあり、さらに、網状赤血球比率の増加傾向が認められたことから、溶血が示唆された。同群の雄では、貧血傾向および髄外造血の亢進は認められなかったものの、ヘモジデリン沈着の程度が増加傾向を示したことから、雌と同様に被験物質投与により溶血を生じた可能性が高い。なお、脾臓重量の増加および網状赤血球比率の増加が認められた例とほぼ一致して同群の雌雄各2例には、多染性赤血球の増加が観察された。

1000 mg/kg 投与群の雌雄では、全例で前胃の扁平上皮のびまん性過形成がみられた。

また、同群の雄1例では腺胃のびらんがみられ、雌1例(第2週の死亡例)の前胃には潰瘍の修復像と考えられる限局性の過形成が観察された。これらの変化が生じた機序は明らかではないが、被験物質の胃粘膜刺激性に由来すると推察される。

肝臓では、1000 mg/kg 投与群の雄 4 例において、くもり硝子状を呈し肥大した肝細胞が小葉中心性に観察された。同群の雌では、この組織変化は1 例に軽度にみられたのみであったが、肝臓の相対重量の有意な増加が認められた。これらの変化は、肝臓の薬物代謝酵素が誘導された際に観察される所見であることから、被験物質投与により酵素誘導が惹起された可能性が高いと考えられる。

上記の毒性変化は、2週間の休薬期間を経て、概ね消失した。溶血を示唆した変化についても、雌雄とも脾臓のヘモジデリン沈着は認められたものの、赤血球数や髄外造血の程度に差はみられなかったことから、休薬によりこの変化の進行も停止するものと思われた。

投与直後の一過性の流涎は、用量依存的かつ高頻度に認められたが、毒性発現とはみなさなかった。この流涎は、強制経口投与された検体に対する忌避感(苦味や刺激等)から、 反射的に生じたものである可能性が高い。投与直前の保定時から流涎を発した例については、 反復投与により条件反射が成立したためであると考えられる。

以上のように、雌雄ラットにTPを 1000 mg/kg の用量で28日間反復投与することによって、一過性の歩行失調、体重増加抑制、摂餌量の減少および前胃上皮のびまん性過形成が認められたほか、溶血および肝臓の薬物代謝酵素誘導を示唆する変化がみられた。これらの変化は、300 mg/kg 投与群の雄では認められなかった。300 mg/kg 投与群の雌では、摂餌量の有意な低下および体重の増加抑制傾向が認められた。これらの変化は、100 mg/kg 投与群では認められなかった。また、300 および 1000 mg/kg 投与群の雌雄には、投与直後に一過性の流涎が観察され、この所見は 100 mg/kg 投与群の雌雄には認められなかった。従って、本試験条件下におけるTPの無影響量は、雌雄とも 100 mg/kg であると判断される。

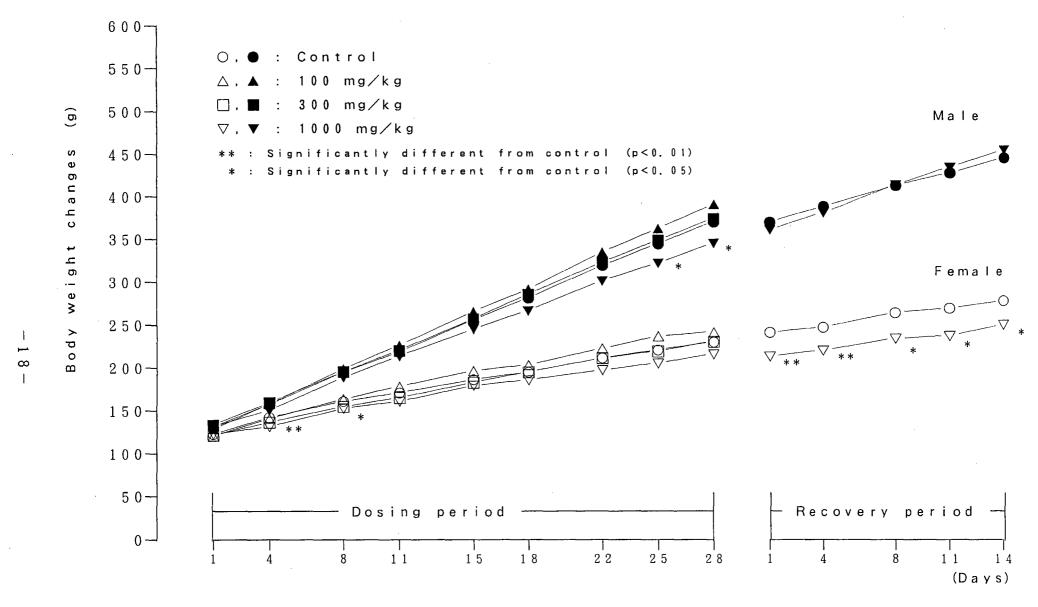


Fig. 1 Twenty-eight day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Body weight changes

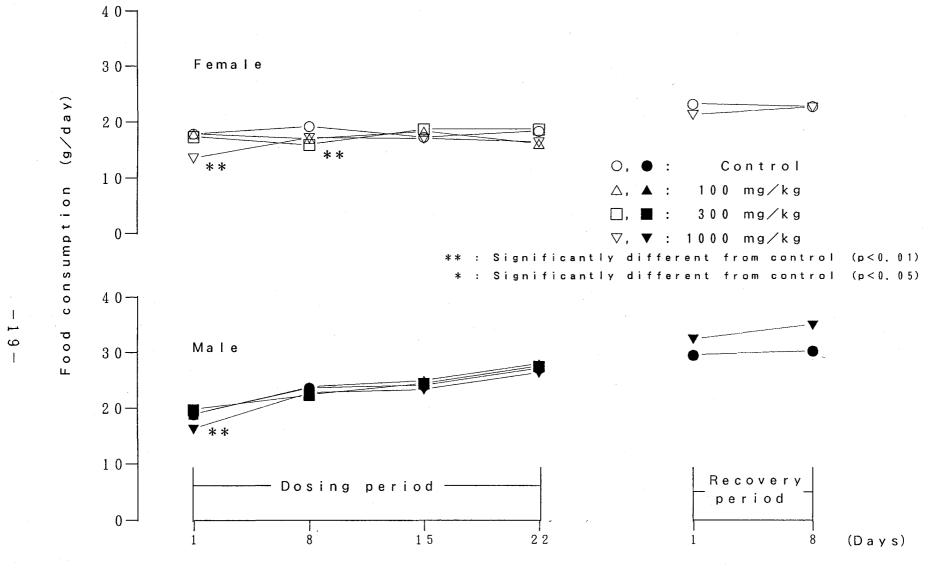


Fig. 2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Food consumption

Clinical findings	Group	Initial number of animals	——— Da	Nu ys of dos 8-14	ing perio	nimals wit d —— 22-28	h clinical finding — Days of reco	ngs overy period ^{a)} 8-14	— — Total —
Transient salivation immediately after administration	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 1 10 [1]	0 0 4 [1] 10 [5]	0 0 3 10 [7]	0 0 2 10 [4]	0	0	0 0 4 [1] 10 [8]
Transient prone position /Ataxic gait	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 0 3	0 0 0 2	0 0 0 4	0 0 0 2	0	0	0 0 0 0 6

a), Recovery test was performed in 5 animals of the control and 1000 mg/kg groups.

[], Number of animals which showed salivation before treatment.

Day 1-7, 1st week

Day 8-14, 2nd week

Day 15-21, 3rd week

Day 22-28, 4th week

Table 1-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Clinical findings in females

Clinical findings	Group	Initial number of animals	——— Day	Nu s of dos 8-14	ing period	nimals with d —— 22-28	n clinical finding — Days of reco	ngs overy period 8-14	a)	— Total —
Transient salivation immediately after administration	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 0 9 [3]	0 0 2 9 [6]	0 0 3 [1] 8 [7]	0 0 1 8 [4]	0	0		0 0 3 [1] 9 [9]
Prone position /Ataxic gait → Died	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 0 1	0 0 0 1	0 0 0 0	0 0 0 0	0	0		0 0 0 2
Transient prone position /Ataxic gait	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 0 6	0 0 0 4	0 0 0 2	0 0 0 6	0	0		0 0 0 9
Loss of fur	Control 100 mg/kg 300 mg/kg 1000 mg/kg	10 5 5 10	0 0 0	0 0 0 0	1 0 1 0	1 0 1 0	0	0		1 0 1 0

a), Recovery test was performed in 5 animals of the control and 4 animals of 1000 mg/kg groups.

[], Number of animals which showed salivation before treatment.

Day 1-7, 1st week

Day 8-14, 2nd week

Day 15-21, 3rd week

Day 22-28, 4th week

Two animals died on day 3 and 9 of administration period in 1000 mg/kg group.

Table 2-1
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Body weight changes in males

Group				Day of recovery period										
or our	1	4	8	11	15	18	22	25	28	1	4	8	11	14
Control	(10) 131.7 ±4.8	(10) 157.3 ±7.1	(10) 194.7 ±10.1	(10) 218.0 ±10.7	(10) 255.3 ±12.5	(10) 280.8 ±12.8	(10) 318.8 ±14.4	(10) 344.3 ±16.4	(10) 369.8 ±17.3	(5) 369.4 ±17.7	(5) 387.9 ±18.4	(5) 412.2 ±19.5	(5) 427.0 ±19.0	(5) 444.4 ±18.7
100 mg/kg	(5) 128.8 ±4.4	(5) 157.4 ±6.5	(5) 198.4 ±7.3	(5) 226.0 ±10.3	(5) 264.7 ±10.7	(5) 290.9 ±8.3	(5) 334.2 ±13.5	(5) 361.9 ±13.8	(5) 390.0 ±15.5	·				
300 mg/kg	(5) 133.2 ±3.1	(5) 159.4 ±8.0	(5) 195.5 ±9.9	(5) 220.1 ±11.6	(5) 256.4 ±12.2	(5) 284.9 ±11.2	(5) 322.5 ±13.5	(5) 348.1 ±14.2	(5) 373.5 ±16.4					
1300 mg/kg	(10) 131.6 ±5.2	(10) 150.8 ±10.7	(10) 188.8 ±14.3	(10) 213.7 ±17.7	(10) 244.6 ±21.7	(10) 266.4 ±22.0	(10) 300.5 ±22.1	(10) 321.8* ±23.7	(10) 345.2* ±25.5	(5) 360.4 ±33.0	(5) 380.6 ±35.2	(5) 413.2 ±36.2	(5) 433.7 ±40.2	(5) 453.7 ±43.0

Parameter, mean(g) ±S.D.
(), number of animals

 \sim

*, significantly different from control, p<0.05

Table 2-2
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Body weight changes in females

Group			· · · · · · · · · · · · · · · · · · ·	Day of recovery period										
55502	1	4	8	11	15	18	22	25	28	1	4	. 8	11	14
Control	(10) 122.8 ±3.1	(10) 142.0 ±4.7	(10) 160.9 ±8.1	(10) 170.7 ±8.7	(10) 186.0 ±13.6	(10) 195.0 ±15.0	(10) 211.0 ±17.9	(10) 220.7 ±18.0	(10) 229.8 ±19.5	(5) 240.6 ±11.6	(5) 246.4 ±12.0	(5) 263.5 ±15.0	(5) 268.3 ±13.7	(5) 277.1 ±15.3
100 mg/kg	(5) 120.9 ±3.8	(5) 140.8 ±4.9	(5) 163.7 ±5.1	(5) 178.0 ±8.0	(5) 196.1 ±10.1	(5) 203.1 ±5.5	(5) 222.6 ±8.9	(5) 236.3 ±10.0	(5) 241.1 ±15.1					
300 mg/kg	(5) 121.2 ±3.3	(5) 136.4 ±3.2	(5) 154.7 ±5.1	(5) 164.9 ±7.1	(5) 182.7 ±8.1	(5) 195.0 ±8.1	(5) 211.4 ±10.7	(5) 219.2 ±14.3	(5) 230.2 ±11.1	•				
1000 mg/kg	(10) 122.4 ±3.1	(9) 131.6** ±5.2	(9) 152.4* ±5.8	(8) 160.9 ±13.6	(8) 179.0 ±12.9	(8) 185.7 ±14.4	(8) 197.1 ±20.2	(8) 205.1 ±19.1	(8) 215.8 ±21.3	213.0 ** ±8.7	(4) 220.0 ** ±9.3	(4) 233.6 * ±13.9	(4) 237.0 * ±19.3	(4) 249.2 * ±14.0

Parameter, mean(g)±S.D.
(), number of animals

 \sim

*, significantly different from control, p<0.05
**, significantly different from control, p<0.01

Table 3-1
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Food consumption in males

Group		Day of do	Day of recovery perio						
· •	1	8	15	22	1	8			
Control	(10) 18.9 ±1.6	(10) 23.6 ±2.1	(10) 24.0 ±2.0	(10) 27·1 ±2.8	(5) 29.5 ±2.1	(5) 30.2 ±2.0			
100 mg/kg	(5) 18.8 ±0.7	(5) 23.8 ±2.0	(5) 24.9 ±1.2	(5) 27.9 ±2.6					
300 mg/kg	(5) 19.7 ±1.1	(5) 22.4 ±2.2	(5) 24.4 ±1.9	(5) 27.5 ±1.4					
1000 mg/kg	(10) 16.3** ±1.2	(10) 22.7 ±2.5	(10) 23.3 ±3.1	(10) 26.3 ±2.4	(5) 32.4 ±4.0	(5) 34.9 ±4.6			

Parameter, mean(g)±S.D.
(), number of animals

**, significantly different from control, p<0.01

Table 3-2
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Group	-	Day of dos	Day of recovery period						
order.	1	8	15	22	1	8			
Control	(10) 17.8 ±1.6	(10) 19.1 ±1.2	(10) 17.2 ±1.6	(10) 18.3 ±1.5	(5) 23.1 ±1.7	(5) 22.7 ±2.8			
100 mg/kg	(5) 17.8 ±1.5	(5) 17.0 ±2.0	(5) 18.2 ±1.1	(5) 16.0 ±3.8					
300 mg/kg	(5) 17.3 ±0.5	(5) 15.9** ±0.7	(5) 18.6 ±2.0	(5) 18.6 ±2.8					
1000 mg/kg	(10) 13.5** ±2.5	(9) 17.1 ±2.4	(8) 17.0 ±1.5	(8) 16.3 ±2.9	(4) 21.2 ±4.5	(4) 22.5 ±1.8			

Parameter, mean(g)±S.D.
(), number of animals

 σ

Food consumption in females

**, significantly different from control, p<0.01

Table 4-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Urinalysis in males and females on day 23 of dosing period

	Number of	Volumo	Specific -	Со	lor ^{b)}	Turbidity ^{c)}					рН						Prot	eind)	Glucose e)	Ke	tone°	Bilin	ubin ^{c)}	Occult	blood ^{c)}	Urobi	linogen ^{r)}
		(nL)	gravity	ly	y	_	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	≥9.0	_	±	+	++	_		±	-	+		±	±	+
Control	5	15.7± 2.9°	1. 048± 0. 008ª)	5	0	5	0	0	0	0	1	1	2	1	0	0	0	5	0	5	2	3	5	0	5	0	5	0
100 mg/kg	5	18.2±3.9	1.047± 0.008	5	0	5	0	0	0	0	0	0	2	3	0	0	1	3	1	5	5	0	5	0	5	0	5	0
300 mg/kg	5	24.3±3.3	1.036± 0.004*	4	1	5	0	0	0	0	1	1	1	ı	1	0	2	2	1	5	5	0	5	0	5	0	5	0
1000 mg/kg	5	32.8± 9.4**	1.026± 0.008**	2	3	5	0	0	0	1	1	2	0	1	0	0	2	2	1	5	4	1	4	1	5	0	4	l
Control	5	14.6± 5.0	1.034± 0.017	4	1	5	0	0	1	1	1	0	1	1	0	4	0	1	0	5	4	1	5	0	5	0	5	0
	5	14.1± 6.4	1.039± 0.017	4	I	5	0	0	0	1	2	0	2	0	0	5	0	0	0	5	5	0	4	1	4	1	4	1
	5	25.1± 7.1	1.015± 0.009	5	0	5	0	0	0	0	3	1	0	1	0	5	0	0	0	5	5	0	5	0	5	0	5	0
1000 mg/kg	5	20.9±12.8	1.030 ± 0.023	0	5	5	2	0	1	2	0	0	0	0	0	2	0	1	2	5	3	2	2	3	5	0	2	3
	Control 100 mg/kg 300 mg/kg Control 100 mg/kg 300 mg/kg	Group of animals Control 5 100 mg/kg 5 300 mg/kg 5 Control 5 100 mg/kg 5 300 mg/kg 5	Group of Volume animals (nL) Control 5 15.7± 2.9° 100 mg/kg 5 18.2± 3.9 300 mg/kg 5 24.3± 3.3 1000 mg/kg 5 32.8± 9.4** Control 5 14.6± 5.0 100 mg/kg 5 14.1± 6.4 300 mg/kg 5 25.1± 7.1	Group of Volume Specific - animals (nL) gravity Control 5 15.7±2.9° 1.048±0.008° 100 mg/kg 5 18.2±3.9 1.047±0.008 300 mg/kg 5 24.3±3.3 1.036±0.004* 1000 mg/kg 5 32.8±9.4** 1.026±0.008** Control 5 14.6±5.0 1.034±0.017 100 mg/kg 5 25.1±7.1 1.015±0.009	Group of Volume Specific Iy Control 5 15.7± 2.9° 1.048± 0.008° 5 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 300 mg/kg 5 24.3± 3.3 1.036± 0.004* 4 1000 mg/kg 5 32.8± 9.4** 1.026± 0.008** 2 Control 5 14.6± 5.0 1.034± 0.017 4 100 mg/kg 5 25.1± 7.1 1.015± 0.009 5	Group of Volume Specific animals (nL) gravity ly y Control 5 15.7±2.9° 1.048±0.008° 5 0 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 1000 mg/kg 5 32.8±9.4** 1.026±0.008** 2 3 Control 5 14.6±5.0 1.034±0.017 4 1 100 mg/kg 5 25.1±7.1 1.015±0.009 5 0	Group of Volume Specific animals (nL) gravity ly y — Control 5 15.7± 2.9° 1.048± 0.008° 5 0 5 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 300 mg/kg 5 24.3± 3.3 1.036± 0.004* 4 1 5 1000 mg/kg 5 32.8± 9.4** 1.026± 0.008** 2 3 5 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 100 mg/kg 5 14.1± 6.4 1.039± 0.017 4 1 5 300 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5	Group of Volume Specific animals (nL) gravity ly y - 5.0 Control 5 15.7±2.9* 1.048±0.008* 5 0 5 0 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 1000 mg/kg 5 32.8±9.4** 1.026±0.008** 2 3 5 0 Control 5 14.6±5.0 1.034±0.017 4 1 5 0 100 mg/kg 5 14.1±6.4 1.039±0.017 4 1 5 0 300 mg/kg 5 25.1±7.1 1.015±0.009 5 0 5 0	Group of Volume Specific animals (nL) gravity ly y - 5.0 5.5 6 Control 5 15.7± 2.9° 1.048± 0.008° 5 0 5 0 0 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 0 300 mg/kg 5 24.3± 3.3 1.036± 0.004* 4 1 5 0 0 1000 mg/kg 5 32.8± 9.4** 1.026± 0.008** 2 3 5 0 0 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 0 0 1000 mg/kg 5 14.1± 6.4 1.039± 0.017 4 1 5 0 0 300 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5 0 0	Group of Volume Specific animals (nL) gravity ly y - 5.05.56.0 Control 5 15.7±2.9* 1.048±0.008* 5 0 5 0 0 0 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 0 0 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 0 0 1000 mg/kg 5 32.8±9.4** 1.026±0.008** 2 3 5 0 0 0 Control 5 14.6±5.0 1.034±0.017 4 1 5 0 0 1 100 mg/kg 5 14.1±6.4 1.039±0.017 4 1 5 0 0 0 300 mg/kg 5 25.1±7.1 1.015±0.009 5 0 5 0 0 0	Group of Volume Specific animals (nL) gravity ly y - 5.0 5.5 6.0 6.5 Control 5 15.7± 2.9* 1.048± 0.008* 5 0 5 0 0 0 0 0 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 0 0 0 0 300 mg/kg 5 24.3± 3.3 1.036± 0.004* 4 1 5 0 0 0 0 1000 mg/kg 5 32.8± 9.4** 1.026± 0.008** 2 3 5 0 0 1 1 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 0 0 1 1 100 mg/kg 5 14.1± 6.4 1.039± 0.017 4 1 5 0 0 0 1 300 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5 0 0 0 0	Group of Volume Specific animals (nL) gravity ly y — 5.0 5.5 6.0 6.5 7.0 Control 5 15.7±2.9° 1.048±0.008° 5 0 5 0 0 0 0 1 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 0 0 0 0 0 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 0 0 0 1 1000 mg/kg 5 32.8±9.4** 1.026±0.008** 2 3 5 0 0 0 1 1 Control 5 14.6±5.0 1.034±0.017 4 1 5 0 0 1 1 1 100 mg/kg 5 14.1±6.4 1.039±0.017 4 1 5 0 0 0 1 2 300 mg/kg 5 25.1±7.1 1.015±0.009 5 0 5 0 0 0 0 0 3	Group of Volume Specific animals (nL) gravity ly y - 5.0 5.5 6.0 6.5 7.0 7.5 Control 5 15.7 ± 2.9° 1.048 ± 0.008° 5 0 5 0 0 0 0 1 1 100 mg/kg 5 18.2 ± 3.9 1.047 ± 0.008 5 0 5 0 0 0 0 0 0 0 300 mg/kg 5 24.3 ± 3.3 1.036 ± 0.004* 4 1 5 0 0 0 0 1 1 1000 mg/kg 5 32.8 ± 9.4** 1.026 ± 0.008** 2 3 5 0 0 1 1 2 Control 5 14.6 ± 5.0 1.034 ± 0.017 4 1 5 0 0 1 1 2 100 mg/kg 5 14.1 ± 6.4 1.039 ± 0.017 4 1 5 0 0 0 1 2 0 300 mg/kg 5 25.1 ± 7.1 1.015 ± 0.009 5 0 5 0 0 0 0 0 3 1	Group of Volume Specific animals (nL) gravity ly y — 5.05.56.06.57.07.58.0 Control 5 15.7±2.9* 1.048±0.008* 5 0 5 0 0 0 0 1 1 2 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 0 0 0 0 0 0 2 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 0 0 0 1 1 2 0 Control 5 14.6±5.0 1.034±0.017 4 1 5 0 0 1 1 1 0 1 100 mg/kg 5 14.1±6.4 1.039±0.017 4 1 5 0 0 0 1 2 0 2 300 mg/kg 5 25.1±7.1 1.015±0.009 5 0 5 0 0 0 0 0 3 1 0	Group of Volume Specific animals (nL) gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 Control 5 15.7± 2.9* 1.048± 0.008* 5 0 5 0 0 0 0 0 1 1 2 1 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 0 0 0 0 0 1 1 1 1 100 mg/kg 5 24.3± 3.3 1.036± 0.004* 4 1 5 0 0 0 0 1 1 1 1 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 0 0 0 1 1 1 0 1 100 mg/kg 5 14.1± 6.4 1.039± 0.017 4 1 5 0 0 0 0 1 2 0 1 300 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5 0 0 0 0 0 3 1 0 1	Group of Volume specific gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥ 0.0 Control 5 15.7 ± 2.9° 1.048 ± 0.008° 5 0 5 0 0 0 0 0 1 1 2 1 0 100 mg/kg 5 18.2 ± 3.9 1.047 ± 0.008 5 0 5 0 0 0 0 0 0 1 1 1 1 1 1 1 1000 mg/kg 5 32.8 ± 9.4 ** 1.026 ± 0.004 * 4 1 5 0 0 0 1 1 1 2 0 1 0 Control 5 14.6 ± 5.0 1.034 ± 0.017 4 1 5 0 0 1 1 1 0 1 0 100 mg/kg 5 25.1 ± 7.1 1.015 ± 0.009 5 0 5 0 0 0 0 0 0 1 1 0 1 0 300 ng/kg 5 25.1 ± 7.1 1.015 ± 0.009 5 0 5 0 0 0 0 0 0 1 1 0 1 0	Group of Volume specific ——————————————————————————————————	Group of Volume Specific Francisco (nL) gravity by y - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥9.0 - ± Control 5 15.7±29³ 1.048±0.008³ 5 0 5 0 0 0 0 0 1 1 2 1 0 0 0 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 0 0 0 0 0 1 1 2 1 1 1 1 0 0 1 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 0 0 0 1 1 2 0 1 0 0 2 Control 5 14.6±5.0 1.034±0.017 4 1 5 0 0 1 1 1 0 1 1 0 4 0 100 mg/kg 5 25.1±7.1 1.015±0.009 5 0 5 0 0 0 0 0 3 1 0 1 0 5 0	Group of Volume Specific animals (nL) gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥9.0 — ± + Control 5 15.7± 2.9³ 1.048± 0.008³ 5 0 5 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 1 3 300 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 2 2 1000 mg/kg 5 32.8± 9.4* 1.026± 0.004* 4 1 5 0 0 0 0 1 1 1 1 2 0 1 0 0 2 2 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 0 0 0 1 1 1 1 0 1 1 0 4 0 1 100 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5 0 5 0 0 0 0 0 1 1 0 0 1 0 5 0 0	Group of Volume Animals (ni.) gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥ 0.0 — ± + + + + + + Control 5 15.7± 2.9* 1.048± 0.008* 5 0 5 0 0 0 0 0 0 1 1 2 1 2 1 0 0 0 0 5 0 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 2 2 1 1 1 1	Group of Volume specific animals (nL) gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥9.0 — ± + + ← — Control 5 15.7± 2.9* 1.048± 0.008* 5 0 5 0 5 0 0 0 0 1 1 2 1 0 0 0 0 0 5 0 5 100 mg/kg 5 18.2± 3.9 1.047± 0.008 5 0 5 0 5 0 0 0 0 0 1 1 1 1 0 1 1 0 2 2 1 5 300 mg/kg 5 32.8± 9.4** 1.026± 0.008** 2 3 5 0 0 1 1 1 1 1 0 1 1 0 4 0 1 0 5 Control 5 14.6± 5.0 1.034± 0.017 4 1 5 0 0 0 1 1 1 1 0 1 1 0 4 0 1 0 5 300 mg/kg 5 25.1± 7.1 1.015± 0.009 5 0 5 0 5 0 0 0 0 0 0 1 1 0 0 1 0 5 0 0 0 5	Group of Volume animals (nL) gravity ly y — 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 \$\frac{1}{2}\$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Group of Volume Specific animals (nt) gravity ly y - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 \$\frac{1}{2}\$0.0 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{2}\) Control 5 15.7\(\frac{1}{2}\) 2.9\(\frac{1}{2}\) 1.048\(\frac{1}{2}\) 0.008\(\frac{1}{2}\) 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0	Group of Volume Specific animals (nL) gravity ly y - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 \$\frac{1}{2}\$.0 - \frac{1}{2}\$ + \frac{1}{2}\$ + \frac{1}{2}\$ - \frac{1}	Group of Volume Specific animals (uL) gravity ly y - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 ≥ 0 - ± + + ± - + Control 5 15.7±2.9* 1.048±0.008* 5 0 5 0 5 0 0 0 0 1 1 2 2 1 0 0 0 5 0 5 2 3 5 0 100 mg/kg 5 18.2±3.9 1.047±0.008 5 0 5 0 5 0 0 0 0 0 1 1 1 1 2 1 0 0 0 0 1 3 1 5 5 0 5 0 300 mg/kg 5 24.3±3.3 1.036±0.004* 4 1 5 0 0 0 0 1 1 1 2 0 1 0 0 0 2 2 1 5 5 0 5 0 1000 mg/kg 5 32.8±9.4**1.026±0.008** 2 3 5 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 5 4 1 5 0 100 mg/kg 5 14.6±5.0 1.034±0.017 4 1 5 0 0 0 0 1 1 1 0 0 1 0 0 0 5 0 0 5 0 5	Group of Volume Specific animals (si.) gravity ly y - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 \$\frac{1}{2}\$0.0 - \(\frac{1}{2}\) + + + \(\frac{1}{2}\) - + - + - \(\frac{1}{2}\) Control 5 15.7\(\frac{1}{2}\) 2.9" 1.048\(\frac{1}{2}\) 0.08" 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	Group of Volume Specific animals (ni.) gravity by y - 5.0 5 5 6.0 6.5 7.0 7.5 8.0 8.5 \$\frac{1}{2}\$.0 - \frac{1}{2}\$ + + + \frac{1}{2}\$ -	Group of Volume Specific animals (nL) gravity by v - 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 22.0 - 2 + + + 2 + - + - 2 + ± Control 5 15.7± 2.9" 1.048± 0.008" 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a) mean ±S.D.
b) ly, light yellow; y, yellow
c) —, negative; ±, trace; +, slight
d) —, negative; ±, trace; +, 30 mg/dL; ++, 100 mg/dL
e) —, negative
f) ±, 0.1 EU/dL; +, 1.0 EU/dL
*: significantly different from control p<0.05
**: significantly different from control p<0.01

Table 4-1 (continued)
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Urinalysis(sediment) in males and females on day 23 of dosing period

		Number	Red blood cell ^{a)}	C	Crystal	b)	Cast ^{a)}	White blood cell ^{a)}	Epitheli	al cell ^{b)}
Sex	Group	of animals	-	_	<u>±</u>	+		-		<u>+</u>
	Control	5	5	0	4	1	5	5	5	0
W- 1 -	Control 5 5	5	0	5	0	5	5	5 -	0	
мате	300 mg/kg	5	5	0	4	1	5	5	4	1
	1000 mg/kg	5	5	0	5	0	5	5	. 5	0
	Control	5	5	0	5	0	5	5	5	0
Parala	100 mg/kg	5	5	0	5	0	5	5	5	0
remale	300 mg/kg	5	5	2	3	0	5	5	5	0
	1000 mg/kg	5	5	0	4	1	5	5	5 4 5 5	2

a) - not observed

b) -, not observed; ±, a few; +, abundant

Table 4-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Urinalysis in males and females on day 9 of recovery period

	_	Number			Color ^{-b)}	Turbidity ^{c)}			рH			Pr	otei	Π ^{đ)}	Glucose ^{e)}	Keto	ne°)	Bilirubin ^{c)}	Occult blood c)	Urobi	ilinogen ^{r)}
Sex	Group a	of animals	Volume (mL)	Specific - gravity	ly	_	6.5	7.0	7.5	8.0	8.5		<u>+</u>	+	-	_	±	_		± _.	+
Male	Control	5	21.5± 3.5°	1.058± 0.007 ^{a)}	5	5	0	2	1	2	0	0	1	4	5	2	3	5	5	5	0
wate	1000 mg/kg	5	29.5±12.3	1.046± 0.012	5	5	0	2	2	0	1	0	2	3	5	4	1	5	5	4	1
Formula	Control	5	19.5± 4.4	1.040± 0.013	5	5	0	2	1	2	0	5	0	0	5	5	0	5	5	5	0
Female	1000 mg/kg	4	12.3± 6.2	1.054± 0.017	4	4	1	0	3	0	0	2	2	0	4	4	0	4	4	4	0

N ∞

a) mean ±S.D.
b) ly, light yellow
c) — negative; ± trace
d) — negative; ± trace; + 30 mg/dL
e) — negative
f) ± 0.1 EU/dL; + 1.0 EU/dL

Table 4-2 (continued)
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Urinalysis(sediment) in males and females on day 9 of recovery period

		Number	Red blood cell ^{a)}	Crys	stal ^{b)}	Cast ^{a)}	White blood cella)	Epithelial cell ^{b)}
Sex	Group	of animals	-		±	-	-	. —
M- 1 -	Control	5	5	0	5	5	5	5
Male	1000 mg/kg	5	. 5	0	5	5	5	5
D. 1	Control	5	5	1	4	5	5	5
Female	1000 mg/kg	4	4	0	4	4	4	4

a) - not observed

b) -, not observed; \pm , a few

Table 5-1-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Hematological findings in males at the end of the dosing period

Group	R B C (x104/mm3)	Hemoglobin (g/dl)	Hematocrit	M C V (μm³)	(pg)	мснс (%)	Reticulocyte (%)	Platelet (x104/mm³)	P T (sec)	APTT (sec)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	662	14.2	42.7	64.6	21.4	33.2	7.1	99.9	22.9	24.7
	±23	±0.4	±1.6	±1.8	±0.6	±0.4	±1.2	±10.5	±2.9	±1.7
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	663	14.1	42.8	64.5	21.2	32.9	6.6	103.5	26.3	25.2
	±22	±0.7	±1.8	±0.8	±0.5	±0.7	±1.0	±9.3	±6.4	±2.2
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	662	14.1	42.0	63.4	21.3	33.5	6.0	105.1	37.2	28.1
	±17	±0.3	±1.1	±1.4	±0.4	±0.4	±1.0	±11.7	±11.9	±2.5
1000 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	659	13.6	41.5	63.1	20.7	32.8	8.7	111.9	30.4	27.4
	±47	±0.6	±1.9	±3.7	±1.6	±0.6	±2.2	±14.2	±8.8	±3.3

0

Group	wвс	Band neutrophil	Segmented neutrophil	Eosinophil	Basophil	Monocyte	Lymphocyte
Group	(x100/mm³)	(%)	(%)	(%)	(%)	(%)	(왕)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	122	0	6	0	0	1	93
	±35	±0	±3	±1	±0	±1	±3
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	107	0	7	0	0	2	91
	±22	±0	±5	±0	±0	±1	±6
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	131	0	7	0	0	1	92
	±19	±0	±3	±0	±0	±1	±2
1000 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	115	0	8	0	0	1	90
	±23	±0	±3	±0	±0	±2	±5

Parameter, mean±S.D.
(), number of animals

Table 5-1-2

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Hematological findings in females at the end of the dosing period

Group	R B C (x104/mm3)	Hemoglobin (g/dl)	Hematocrit	M C V (μπ³)	М С Н (рд)	М С Н С (%)	Reticulocyte (%)	Platelet (x104/mm3)	P T (sec)	APTT
Control	(5) 691 ±36	(5) 14.1 ±0.9	(5) 42.7 ±2.6	(5) 61.8 ±1.1	(5) 20.4 ±0.5	(5) 33.0 ±0.3	(5) 3.7 ±1.1	(5) 94.9 ±7.1	(5) 17.5 ±1.6	(5) 22.8 ±1.8
100 mg/kg	(5) 694 ±15	(5) 14.4 ±0.4	(5) 43.0 ±0.7	(5) 62.0 ±1.0	(5) 20.7 ±0.6	(5) 33.5 ±0.4	(5) 3.2 ±0.9	100.6 ±4.0	(5) 15.4 ±0.4	(5) 21.1 ±1.9
300 mg/kg	(5) 672 ±28	(5) 14.0 ±0.4	(5) 41.8 ±1.2	(5) 62.3 ±1.2	(5) 20.8 ±0.3	(5) 33.4 ±0.2	(5) 3.9 ±0.4	(5) 105.1 ±11.8	(5) 16.7 ±1.0	(5) 24.4 ±2.5
1000 mg/kg	(4) 615** ±45	(4) 12.7** ±0.2	(4) 38.0* ±0.4	62.1 ±4.7	(4) 20.8 ±1.3	(4) 33.4 ±0.5	10.7 ±4.1	(4) 101.9 ±6.4	(4) 17.1 ±1.9	21.6 ±1.0

	l
C	Ç
۰	
	ļ

Group	w в с	Band neutrophil	Segmented neutrophil	Eosinophil	Basophil	Monocyte	Lymphocyte
Oloup	(x100/mm³)	(%)	(%)	(%)	(%)	(%)	(%)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	38	0	13	0	0	2	85
	±13	±0	±4	±0	±0	±2	±7
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	47	0	8	1	0	3	87
	±17	±0	±6	±1	±0	±4	±1.1
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	45	0	12	1	0	1	86
	±11	±0	±5	±1	±0	±1	±6
1000 mg/kg	(4)	(4)	(4)	(4)	(4)	(4)	(4)
	65	0	7	2	0	1	91
	±20	±0	±3	±4	±0	±1	±3

Parameter, mean±S.D.
(), number of animals

*, significantly different from control, p<0.05 **, significantly different from control, p<0.01

Table 5-2-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Hematological findings in males at the end of the recovery period

Group	R B C (x104/mm3)	Hemoglobin (g/dl)	Hematocrit (%)	M C V	(ba) W C H	.МСНС (%)	Reticulocyte (%)	Platelet (x104/mm³)	PT (sec)	APTT (sec)
Control	(5) 707 ±15	(5) 14.4 ±0.2	(5) 44.1 ±0.8	(5) 62.5 ±1.0	(5) 20.4 ±0.2	(5) 32.7 ±0.3	(5) 3.3 ±1.1	(5) 101.4 ±3.8	26.4 ±2.1	(5) 25.9 ±1.0
1000 mg/kg	(5) 718 ±27	(5) 14.2 ±0.4	(5) 43.6 ±1.6	(5) 60.7* ±0.9	(5) 19.8* ±0.3	(5) 32.7 ±0.4	(5) 5.2 ±1.8	(5) 101.2 ±9.2	27.1 ±4.2	(5) 25.2 ±2.2

	ţ	
c	ď	2
t	٠	_
	1	

Crown	WBC	Band neutrophil	Segmented neutrophil	Eosinophil	Basophil	Monocyte	Lymphocyte
Group	(x100/mm³)	(왕)	(%)	(ዩ)	(%)	(%)	(%)
Control	(5) 101 ±21	(5) 0 ±0	(5) 7 ±3	(5) 0 ±0	(5) 0 ±0	(5) 2 ±2	(5) 91 ±4
		•					
ч.							
1000 mg/kg	(5) 104 ±29	(5) 0. ±0	(5) 9 ±3	(5) 1 ±1	(5) 0 ±0	(5) 2 ±1	(5) 88 ±4

*, significantly different from control, p<0.05

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Hematological findings in females at the end of the recovery period

Group	R B C (x104/mm ³)	Hemoglobin (g/dl)	Hematocrit	M C V (μm³)	(ba) W C H	мснс (%)	Reticulocyte (%)	Platelet (x104/mm3)	P T (sec)	APTT (sec)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	732	14.6	44.1	60.2	20.0	33.2	3.1	98.1	17.1	21.8
	±22	±0.4	±1.2	±1.5	±0.6	±0.4	±0.8	±6.1	±0.9	±1.5
1000 mg/kg	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
	699	14.0	42.4	60.7	20.0	32.9	4.1	95.8	16.8	21.7
	±58	±1.0	±3.1	±1.6	±0.5	±0.4	±1.0	±2.4	±0.9	±0.3

ပ I							
Group	′ WBC	Band neutrophil (%)	Segmented neutrophil (%)	Eosinophil	Basophil	Monocyte (%)	Lymphocyte (%)
Control	(5) 41 ±6	(5) 0 ±0	(5) 8 ±2	(5) 1 ±1	(5) 0 ±0	(5) 1 ±1	(5) 90 ±4
•							
	(4)	(4)	(4)	(4)	(4)	(4)	(4)
1000 mg/kg	(4) 42 ±8	0 ±0	13 ±4	1 ±1	0 ±0	2 ±1	(4) 84 ±5

Parameter, mean±S.D.
(), number of animals

ယ

Table 6-1-1

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Biochemical findings in males at the end of the dosing period

Q	Total protein	Albumin	A/G	Glucose	Total cholesterol	Tri- glyceride	BUN	Creatinine	Inorg. phos.	Ca
Group	(g/dl)	(g/dl)		(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
Control	(5) 5.2 ±0.1	(5) 3.0 ±0.1	(5) 1.37 ±0.02	(5) 145 ±16	(5) 52 ±5	(5) 78 ±16	(5) 11 ±1	(5) 0.6 ±0.0	(5) 8.0 ±0.3	(5) 9.3 ±0.4
100 mg/kg	(5) 5.1 ±0.4	(5) 2.9 ±0.1	(5) 1.41 ±0.19	(5) 140 ±19	(5) 45 ±7	(5) 79 ±28	(5) 14* ±2	0.7 ±0.1	(5) 8.3 ±0.2	(5) 9.2 ±0.3
300 mg/kg	(5) 5.1 ±0.1	(5) 3.0 ±0.1	(5) 1.39 ±0.15	(5) 143 ±29	(5) 45 ±6	(5) 77 ±25	(5) 9 ±2	(5) 0.6 ±0.1	(5) 8.9* ±0.5	(5) 9.4 ±0.2
.000 mg/kg	(5) 5.0 ±0.3	(5) 2.8** ±0.1	(5) 1.29 ±0.08	(5) 151 ±25	(5) 49 ±10	(5) 76 ±33	(5) 11 ±1	0.7 ±0.1	(5) 9.2* ±1.0	(5) 9.4 ±0.6

34-

	Na	K	Cl	ALP	LDH	GPT	GOT	7-GTP
Group	(mEg/1)	(mEq/l)	(mEq/l)	(U/1)	(U/1)	(U/1)	(U/1)	(U/1)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	145.7	3.97	106.3	373	227	28	60	0
	±0.7	±0.22	±1.0	±86	±178	±8	±19	±0
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	144.6	4.18	105.6	373	171	30	63	0
	±1.0	±0.19	±1.7	±69	±77	±2	±6	±0
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	145.0	4.10	106.5	334	156	30	56	0
	±0.9	±0.18	±1.0	±82	±98	±3	±8	±0
1000 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	145.1	4.08	106.1	417	182	32	55	0
	±0.5	±0.14	±1.2	±113	±55	±5	±9	±0

Parameter, mean±S.D.
(), number of animals

*, significantly different from control, p<0.05 **, significantly different from control, p<0.01

Table 6-1-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Biochemical findings in females at the end of the dosing period

Grand.	Total protein	Albumin	A/G	Glucose	Total cholesterol	Tri- glyceride	BUN	Creatinine	Inorg. phos.	Ca
Group	(g/dl)	(g/dl)		(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(5) (7.9) ±1.6 (5) 8.0 ±1.5 (5) 6.2 ±0.4 (4) 7.6	(mg/dl)
Control	(5) 5.1 ±0.1	(5) 3.1 ±0.1	(5) 1.60 ±0.22	(5) 95 ±13	(5) 45 ±11	(5) 34 ±13	(5) 19 ±3	(5) 0.6 ±0.1	7.9	(5) 9.0 ±0.5
100 mg/kg	5.2 ±0.3	(5) 3.2 ±0.2	(5) 1.62 ±0.13	(5) 105 ±12	(5) 53 ±8	(5) 40 ±13	(5) 19 ±2	0.7 ±0.2	8.0	(5) 9.2 ±0.4
300 mg/kg	(5) 5.4 ±0.1	(5) 3.2 ±0.1	(5) 1.52 ±0.10	(5) 108 ±13	(5) 56 ±9	(5) 54 ±20	(5) 19 ±2	0.7 ±0.1	6.2	(5) 9.1 ±0.2
1000 mg/kg	5.2 ±0.3	(4) 3.1 ±0.2	(4) 1.52 ±0.13	(4) 106 ±9	(4) 64 ±9	(4) 41 ±9	(4) 18 ±4	0.6 ±0.1	7.6 ±1.2	(4) 9.1 ±0.5

တ

	Na	К .	Cl	ALP	LDH	GPT	GOT	γ-GTP
Group	(mEq/1)	(mEq/l)	(mEq/l)	(U/1)	(U/1)	(U/1)	(U/1)	(U/1)
Control	(5) 145.7 ±1.9	(5) 4.64 ±2.33	(5) 109.3 ±3.8	(5) 237 ±25	(5) 146 ±72	(5) 22 ±2	(5) 70 ±9	(5) 0 ±1
100 mg/kg	(5) 145.1 ±0.8	(5) 4.22 ±1.19	108.8 ±2.9	(5) 236 ±52	(5) 155 ±44	(5) 26 ±12	(5) 64 ±14	(5) 0 ±0
300 mg/kg	146.2 ±0.7	(5) 3.63 ±0.35	109.4 ±0.3	(5) 203 ±58	(5) 150 ±70	(5) 24 ±4	(5) 62 ±10	(5) 0 ±0
1000 mg/kg	(4) 145.7 ±1.2	(4) 4.07 ±0.83	(4) 108.6 ±1.6	(4) 246 ±63	(4) 106 ±42	(4) 43 ±27	(4) 61 ±12	(4) 1 ±1

Parameter, mean±S.D.
(), number of animals

Table 6-2-1

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Biochemical findings in males at the end of the recovery period

0	Total protein	Albumin	A/G	Glucose	Total cholesterol	Tri- glyceride	BUN	Creatinine	Inorg. phos.	Ca
Group	(g/dl)	(g/dl)		(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
Control	(5) 5.3 ±0.2	(5) 2.8 ±0.1	(5) 1.11 ±0.13	(5) 148 ±12	(5) 48 ±6	(5) 51 ±14	(5) 13 ±2	(5) 0.6 ±0.1	(5) 7.5 ±0.6	(5) 9.0 ±0.3
				•						
1000 mg/kg	(5) 5.3 ±0.2	(5) 2.8 ±0.2	(5) 1.17 ±0.09	(5) 141 ±17	(5) 36* ±5	(5) 59 ±15	(5) 16 ±2	(5) 0.5 ±0.1	(5) 8.0 ±0.5	(5) 9.7* ±0.4

	Na	К	Cl	ALP	LDH	GPT	GOT	γ-GTP
Group	(mEq/1)	(mEq/l)	(mEg/l)	(U/1)	(U/1)	(U/1)	(U/1)	(U/1)
Control	(5) 144.5 ±0.9	(5) 4.34 ±0.20	(5) 106.4 ±1.0	(5) 275 ±42	(5) 181 ±72	(5) 27 ±5	(5) 65 ±11	(5) 0 ±1
	(5)	(5)	(5)	(5).	· (5)	(5)	(5)	(5)
1000 mg/kg	(5) 143.8 ±0.3	(5) 4.31 ±0.35	(5) 106.2 ±1.1	(5) 306 ±73	(5) 194 ±143	(5) 34 ±14	(5) 63 ±13	(5) 0 ±0

^{*,} significantly different from control, p<0.05

Table 6-2-2 . Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Biochemical findings in females at the end of the recovery period

0	Total Protein	Albumin	A/G	Glucose	Total cholesterol	Tri- glyceride	BUN	Creatinine	Inorg. Phos.	Ca
Group	(g/dl)	(g/dl)		(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
Control	(5) 5.5 ±0.2	3.1 ±0.1	(5) 1.36 ±0.12	(5) 134 ±25	(5) 61 ±8	(5) 53 ±19	(5) 22 ±5	0.7 ±0.1	(5) 7.4 ±0.8	(5) 9.3 ±0.2
•										
1000 mg/kg	(4) 5.5 ±0.3	3.2 ±0.2	1.37 ±0.10	(4) 117 ±17	(4) 59 ±5	(4) 40 ±15	(4) 20 ±2	0.7 ±0.1	(4) 8.9 ±1.8	9.5 ±0.5

ယ K Na C1 ALP LDH GPT GOT γ-GTP Group (mEq/1) (mEq/1) (mEq/1) (U/1) (U/1) (U/1) (U/1) (U/1) (5) 4.57 ±0.30 (5) 63 ±7 (5) 143.9 ±0.5 (5) 107.9 ±1.2 (5) 182 ±42 (5) 0 ±0 (5) 178 ±50 (5) 22 ±3 Control

(4) 150 ±35

(4) 146 ±56

(4) 62 ±11

(4) 23 ±4

(4) 0 ±0

Parameter, mean±S.D.
(), number of animals

1000 mg/kg

(4) 144.0 ±1.1

(4) 4.47 ±0.54

(4) 107.9 ±1.1

Table 7-1-1

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Absolute organ weights in males at the end of the dosing period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Testes	Epididymides
	(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)
Control	(5) 347.7 ±15.7	(5) 1903.3 ±44.3	(5) 614.4 ±80.2	(5) 1199.8 ±75.3	(5) 13184.0 ±512.0	(5) 2815.3 ±281.8	(5) 750.8 ±41.8	(5) 51.7 ±5.7	2864.0 ±66.7	(5) 596.5 ±50.8
100 mg/kg	(5) 360.6 ±17.1	(5) 1948.9 ±51.9	(5) 753.4 ±106.8	(5) 1190.2 ±48.6	(5) 12989.3 ±1347.5	(5) 2862.2 ±208.3	722.0 ±132.2	(5) 49.4 ±2.7	(5) 2878.9 ±118.1	(5) 595.1 ±37.9
300 mg/kg	(5) 343.3 ±14.3	(5) 1941.5 ±49.0	(5) 683.1 ±74.9	(5) 1172.6 ±79.7	(5) 12477.1 ±743.8	(5) 2808.2 ±322.8	(5) 774.5 ±93.6	(5) 43.8* ±4.3	(5) 2838.7 ±273.4	(5) 607.1 ±98.0
1000 mg/kg	(5) 305.4** ±5.0	(5) 1946.9 ±114.3	(5) 562.5 ±103.7	(5) 1101.6 ±52.2	(5) 12686.6 ±812.0	(5) 2583.8 ±154.5	762.9 ±120.3	(5) 43.4* ±3.7	(5) 2863.9 ±239.2	(5) 580.5 ±23.6

 ∞

*, significantly different from control, p<0.05 **, significantly different from control. p< 0.01

Table 7-1-2

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Absolute organ weights in females at the end of the dosing period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	0varies
	(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)
Control	(5) 212.0 ±23.4	(5) 1761.8 ±43.4	(5) 474.9 ±150.8	(5) 771.2 ±94.6	(5) 6749.1 ±1111.2	(5) 1674.4 ±123.6	(5) 482.6 ±97.0	(5) 61.6 ±4.5	(5) 84.3 ±7.9
100 mg/kg	(5) 227.8 ±12.0	1727.1 ±68.9	403.7 ±70.3	(5) 777.0 ±89.8	(5) 7084.1 ±502.3	1663.9 ±107.6	(5) 476.1 ±41.4	(5) 57.9 ±7.3	(5) 95.1 ±11.6
300 mg/kg	(5) 213.7 ±11.8	(5) 1790.5 ±66.3	(5) 451.3 ±93.8	(5) 779.3 ±60.5	(5) 7218.3 ±724.6	(5) 1765.8 ±148.6	(5) 485.1 ±23.7	(5) 53.0 ±6.3	(5) 85.7 ±11.8
1000 mg/kg	202.0 ±24.8	1860.9 ±50.3	347.8 ±51.5	761.8 ±54.4	7532.5 ±1431.7	(4) 1791.8 ±232.2	(4) 640.1* ±98.6	(4) 51.8 ±7.0	73.5 ±22.2

39

Table 7-2-1

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Absolute organ weights in males at the end of the recovery period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Testes	Epididymides
	(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)
Control	(5) 409.7 ±18.3	(5) 1977.8 ±68.3	(5) 516.3 ±136.7	1395.4 ±83.2	13964.7 ±454.8	3169.4 ±271.5	(5) 842.6 ±43.6	(5) 59.2 ±13.4	(5) 3311.3 ±274.1	871.9 ±56.1
e				ě	J					
1000 mg/kg	(5) 415.3 ±41.6	(5) 2052.5 ±91.7	(5) 584.4 ±102.5	(5) 1295.2 ±113.2	(5) 13720.0 ±2360.5	(5) 2964.5 ±456.8	(5) 841.3 ±103.8	(5) 53.5 ±8.4	(5) 3112.3 ±224.5	746.7* ±70.1

Table 7-2-2

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Absolute organ weights in females at the end of the recovery period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Ovaries
<u>-</u>	(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)
Control	(5) 255.6 ±14.6	(5) 1851.9 ±43.5	372.3 ±106.2	(5) 834.0 ±40.1	(5) 7697.5 ±561.9	1988.0 ±73.0	(5) 491.9 ±59.3	(5) 65.5 ±11.7	90.7 ±14.7
			•						
							*		
1000 mg/kg	(4) 229.1* ±14.5	(4) 1842.1 ±76.2	(4) 345.2 ±72.3	(4) 808.6 ±59.0	(4) 7107.0 ±209.0	(4) 1757.6** ±79.0	(4) 504.7 ±33.5	(4) 60.9 ±4.7	(4) 85.8 ±4.9

*, significantly different from control, p<0.05 **, significantly different from control, p<0.01

Table 8-1-1

Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Relative organ weights in males at the end of the dosing period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Testes	Epididymides
	(g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	347.7	5.480	1.766	3.451	37.939	8.115	2.164	0.149	8.255	1.715
	±15.7	±0.153	±0.200	±0.143	±0.881	±0.923	±0.181	±0.017	±0.491	±0.098
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	360.6	5.413	2.090	3.305	35.955	7.934	2.001	0.138	7.994	1.654
	±17.1	±0.252	±0.277	±0.174	±2. 4 37	±0.353	±0.348	±0.012	±0.423	±0.152
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	343.3	5.660	1.988	3.414	36.403	8.198	2.254	0.128	8.275	1.764
	±14.3	±0.178	±0.172	±0.116	±2.798	±1.088	±0.244	±0.015	±0.782	±0.235
1000 mg/kg	(5) 305.4** ±5.0	(5) 6.373** ±0.347	(5) 1.844 ±0.362	3.608 ±0.195	(5) 41.538 ±2.609	(5) 8.466 ±0.614	(5) 2.495 ±0.365	(5) 0.142 ±0.012	(5) 9.382* ±0.858	(5) 1.902 ±0.105

*, significantly different from control, p<0.05 **, significantly different from control. p< 0.01

Table 8-1-2
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Relative organ weights in females at the end of the dosing period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Ovaries
	(ā)	(mg/g)	(ma/a)	(mg/g)	(ma\a)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
Control	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	212.0	8.413	2.225	3.647	31.704	7.951	2.270	0.294	0.402
	±23.4	±1.167	±0.553	±0.315	±2.441	±0.716	±0.312	±0.044	±0.057
100 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	227.8	7.598	1.766	3.407	31.093	7.310	2.093	0.256	0.418
	±12.0	±0.483	±0.245	±0.305	±1.278	±0.418	±0.188	±0.040	±0.050
300 mg/kg	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	213.7	8.403	2.114	3.646	33.757	8.267	2.275	0.248	0.404
	±11.8	±0.614	±0.443	±0.181	±2.335	±0.552	±0.156	±0.030	±0.073
1000 mg/kg	(4) 202.0 ±24.8	(4) 9.305 ±0.984	(4) 1.724 ±0.183	(4) 3.792 ±0.229	(4) 37.083** ±2.813	8.873 ±0.313	(4) 3.161** ±0.139	(4) 0.258 ±0.035	(4) 0.361 ±0.079

Table 8-2-1
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Relative organ weights in males at the end of the recovery period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Testes	Epididymides
	(ā)	(mg/g)	(mg/g)	(mg/g)	(ma/a)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
Control	409.7 ±18.3	(5) 4.830 ±0.150	1.250 ±0.281	3.412 ±0.268	(5) 34.103 ±0.824	(5) 7.736 ±0.573	(5) 2.062 ±0.185	(5) 0.145 ±0.031	(5) 8.075 ±0.420	(5) 2.131 ±0.151
					•	,				
1000 mg/kg	(5) 415.3 ±41.6	(5) 4.971 ±0.410	(5) 1.405 ±0.171	(5) 3.123 ±0.114	(5) 32.968 ±3.941	(5) 7.131 ±0.736	(5) 2.038 ±0.293	(5) 0.131 ±0.033	(5) 7.579 ±1.182	(5) 1.815* ±0.263

Table 8-2-2
Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats
Relative organ weights in females at the end of the recovery period

Group	Body weight	Brain	Thymus	Heart	Liver	Kidneys	Spleen	Adrenal glands	Ovaries
	(g)	(mg/g)	(mg/g)	(mg/g)	(ma/a)	(mā/ā)	(mg/g)	(mg/g)	(mg/g)
Control	(5) 255.6 ±14.6	(5) 7.265 ±0.487	(5) 1.461 ±0.430	(5) 3.266 ±0.133	(5) 30.122 ±1.596	(5) 7.789 ±0.336	(5) 1.921 ±0.146	(5) 0.256 ±0.045	(5) 0.357 ±0.065
							÷		
			.• •			**	.		
1000 mg/kg	(4) 229.1* ±14.5	(4) 8.051* ±0.183	(4) 1.497 ±0.222	3.530* ±0.131	(4) 31.092 ±1.470	(4) 7.690 ±0.473	(4) 2.204* ±0.076	(4) 0.268 ±0.036	(4) 0.377 ±0.046

Group Grade	Conti	ol +	100 m	g/kg +	300_mg,	/kg +	1000 m	g/kg +
(Lung/Bronchus) Spot, dark	[5] 3	2	[5]	2	[5] 2	3	[5] 4	1
(Heart) Area, pale	[5] 4	1	[5] 5	0	[5] 5	0	[5] 5	0
Thoracic cavity) White material	[5] 5	0	[5] 5	0	[5] 4	1	[5] 5	0
(Stomach) Edema, mucosa, forestomach	[5] 5	0	[5] 5	. 0	[5] 5	0	[5] 4	1

^{-,} Negative; +, Positive
[], Number of animals examined

Table 9-1-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Macroscopic findings in females at the end of the dosing period

Group Grade	Co	ntro:	t +	. 10	00 mg	/kg +	300) mg,	/kg +	10	000 m	g/kg +
Lung/Bronchus)	[5]			. [5]			[5]			[4]		
Area, white	-	5	0		4	1		5	0		4	0
Spot, dark red		5	0		5	. 0		5	0	•	3	1
Liver)	[5]			[5]			[5]			[4]		
Yellowish		4	1		5	0		5	0	• •	4	0
Accentuation, lobular pattern		4	1		5	0		5	0		4	0
Spot, pale		5	0		3	2		5	0		4	0
Spleen)	[5]			[5]			[5]			[4]		
Accessory spleen	,	4	1	,	5	0	1	5 .	0		4	0
Adrenal gland)	[5]			[5]			[5]			[4]		
Spot, dark	(0)	5	0	, 0,	5	0	1 0,	5	. 0	,	3	1
Ovary)	[5]			[5]			[5]			[4]		
Dilatation, paraovarian bursa	. 0,	5	0	, 0,	5	0	,	4	1	,	4	0
Skin)	[5]			[5]			[5]			[4]		
Alopecia/Sparsed fur		4	1		5	0		4	1	• -	4	0
Crust		4	1		5	0		4	1		4	. 0

^{-,} Negative; +, Positive
[], Number of animals examined

Table 9-2-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Macroscopic findings in males at the end of the recovery period

Group Grade	Control +	1000 mg/kg - +
(Lung/Bronchus) Spot, dark	[5] 4 1	[5] 3 2

-, Negative; +, Positive
[], Number of animals examined

Macroscopic findings in females at the end of the recovery period

Group Grade	Control - +	1000 mg/kg - +
	[5]	[4]
No remarkable change		

^{-,} Negative; +, Positive
[], Number of animals examined

Table 9-3 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Macroscopic findings in females died during the dosing period

Group Grade	10	00 m	g/kg †
(Thoracic cavity)	[2]		
Oily fluid		0	2
Blood clot		1	1
(Lung/Bronchus)	[2]		
Area, dark		0	2
(KIdney)	[2]		
Hypoplasia, unilateral, left side		1	1
(Spleen)	[2]		
Pale		1	1
(Glandular stomach)	[2]		
Pale, mucosa		1	1
(Esophagus)	[2]		
Hemorrhage		1	1
Perforation		1	1
(Skin)	[2]		
Wet, around the mouth		0	2
Area, red, forelimb, right side		1	1

^{-,} Negative; +, Positive
[}, Number of animals examined

Table 10-1-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Group Grade		Co	ntr ±	ol +	++	+++	Pos.		10	0 m	g/k +	g ++	+++	Pos.		30	ن _± 00	ng/l +	⟨g ††	+++	Pos.		10	00 ±	mg/	kg ††	+++	Pos.
														105.										_				
(Brain)	[5]						[0]						(0]						[5]					
No remarkable change (Spinal cord)	r	51						r	0]						ſ	0]						r	5]					
No remarkable change	ı	οJ						ι	υĵ						L	U J						ı	ij					
(Heart)	r	5]						I	Λ1						r	0]						f	5]					
Myocardial degeneration	L	3	2	Λ	0	0	2	ı	01						Ł	O J						ι	5	0	Λ	0	0	0
(Liver)	г	5 l	4	U	U	U	L	[51						ſ	5]						г	5]	٠	v	U	U	U
Hypertrophy, hepatocyte, centri								·	J,						L	o j						ı	υj					
ground glass appearance	1000	5	0	0	0	0	0		5	n	٥	0	0	0		5	0	n	0	0	0		1	3	1	0	0	4#
Fatty change, periportal		ő	5	ŏ	Ö	ő	5		ő	. 3	2	ŏ	ő	5		1	4	ŏ	ő		4		3	2	ō	ŏ	ŏ	2
(Thymus)	ſ	5 j	Ü	Ŭ	Ŭ	•	U	1	οj		~	·	Ū	•	F	0]	-	·	·	Ū	-	1	5]	_	ŭ	·	•	-
No remarkable change		٠,						٠	٠,						•	٠,						•	٠,					
(Spleen)	ſ	5]						ſ	5]						ſ	5]						ſ	5]					
Hematopoiesis, extramedullary		ő	0	3	2	0	5		ő	0	5	0	0	5		ó	0	4	1	0	5	•	ō	0	3	2	0	5
Deposit, hemosiderin		Ō.	5	Ō	ō	Ō	5		0	5	0	0	0	5		0	5	0	0	0	5		0	0	5	0	0 * *	5
Dilatation, sinus		5	Ō	0	0	Ó	0		5	0	0	0	0	0		5	0	0	0		0		0	1	4	0	0**	5##
(Kidney)	[5]						[0]						[01						[5]					
Basophilic tubule, cortex	_	1	4	0	0	0	4	-	_														2	3	0	0	0	3
Eosinophilic body		4	0	0	1	0	1																4	0	1	0	0	1
Cyst		4	0	1	0	0	1																5	0	0	0	0	0
(Urinary bladder)	{	5]						[0]						[0]						. [.	5]					
No remarkable change																												
(Adrenal gland)	[5]						[0]						[0]						[5]					
No remarkable change																												
(Stomach)	[5]						[5]						[5]						[5]					
Squamous hyperplasia, diffuse,																												
forestomach		5	0	0	0	0	0		5	0	0	0	0	0		5	0	0	0	0	0		0	5	0	0	0**	5##
Erosion, glandular stomach	_	5	0	0	0	0	0	_	5	0	0	0	0	0	_	5	0	0	0	0	0	_	4	1	0	0	0	1
(Ileum)	į	5]						[0]						[0]						[5]					
No remarkable change									0.1							. 1							~ 1					
(Sciatic nerve)	i	5]						1	0]						I	0]						l	5]					
No remarkable change	г	- 1							0.1						r	0.1						r	c 1					
(Bone marrow of femur)	l	5]						L	0]						L	0]						l	5]					
No remarkable change	r	0.1						r	0.1						r	0.1							11					
(Lung)	l	2]		^		^		L	2]			0	^	0	i	3]				0	0	L	1]	1	^	^	^	1
Hemorrhage		0	2	U	U	U.	2		0	T	1	0	0	2		0	2	1	U	0	3		0	1	U	U	U	Т
Granuloma, foreign body,			^	^		^			•	^		0		^		0	^		0	0	1		1	^	^	^	Λ	Λ
on pleura		2	U	U	U	0	0		2	0	U	0	0	0		2	0	1	0	0	1		1	0	0	0	0	0

^{-,} Negative; \pm , Very slight; \pm , Slight; \pm , Moderate; \pm , Severe; Pos., Total of positive grade [], Number of animals examined

^{**,} Significantly different from control p<0.01 (Two-tailed Mann-Whitney U test)

^{#,} Significantly different from control p<0.05 (One-tailed Fisher exact test)
##, Significantly different from control p<0.01 (One-tailed Fisher exact test)

Table 10-1-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats Histopathological findings in females at the end of the dosing period

Group Grade		onti ±		++	+++	Pos.		10	00 m ±	ng/k +	g ++	+++	Pos.		30	0 m ±	g/k †	g ++	+++	Pos.		10	00 ±	mg/ +	kg ++	+++	Pos.
(Brain)	[5]						[0]						[0]						ĺ	4]				_	
No remarkable change																											
(Spinal cord)	[5]						ι	0]						L	0]						L	4]					
No remarkable change							,	ο 1							0.1							4.1					
(Heart)	[5]		^	^	^		ı	0]						L	0]						l	4]		^	^	^	0
Myocardial degeneration	- 4	1	0	0	0	1	r	51						r	5]						r	4	0	0	0	0	0
(Liver) Hypertrophy, hepatocyte, centri	[5]						ι	ן פ						ı	9 J						L	4]					
ground glass appearance	100u1a 5		0	Λ	0	0		5	Λ	٥	0	0	0		5	0	Λ	0	0	0		3	1	Λ	0	0	1
Fatty change, periportal		3		ő	ŏ	5		0	5	ő	0	ő	5		0	3	2	Ö	ő	5		ő	4	Ö	ő	ő	4
Fatty change, focal	5	ő	ő	0	ő	Ö		4	õ	1	ő	ő	ĭ		5	ő	õ	Ö	Ô	ő		4	0	0	0	Ô	0
(Thymus)	[5]		٠	U	·	U	ſ	0]	v	1	U	U	_	ſ	0]	U	U	U	U	U	ſ	4]	v	U	U	U	U
No remarkable change	[0]		,					0,						Ŀ	٥,							7,					
(Spleen)	[5]						ı	5]						ſ	5]						г	4]					
Hematopoiesis, extramedullary	0		0	0	0	5	·	0	5	0	0	0	5		ő	4	1	0	0	5	L	70	Λ	4	Λ	0**	. 4
Deposit, hemosiderin	ŏ		3	ŏ	ŏ	5		ő	ŏ	5	ŏ	ŏ	5		ŏ	i	_	ŏ	ŏ	5		ŏ	ŏ	'n	4	0**	-
Dilatation, sinus	5		ő	ŏ	ő	ő		5	ő	Ö	ŏ	ŏ	Ö		5	ō	ō	ŏ	ő	Ö		ŏ	ŏ	4	ō	•	4##
(Kidney)	[5]		•	•	•	Ü	ſ	0]	·	•	Ū	•	Ū	ſ	0]	•	•	Ŭ	·	•	ſ	4]	Ŭ	•	•	•	- 1, 1,
Basophilic tubule, cortex Mineralization,	0		0	0	0	5	٠	٠,						٠	٠,						Ċ	í	3	0	0	0	3
cortico-medullary junction	4	1	0	0	0	1																4	0	0	0	0	0
(Urinary bladder)	[5]						ſ	0]						ſ	0]						ſ	4]					
No remarkable change								-																			
(Adrenal gland)	[5]						[0]						[0]						[4]					
No remarkable change																											
(Stomach)	[5]						[5]						[5]						Ţ	4]					
Squamous hyperplasia, diffuse,																											
forestomach	5	0	0	0	0	0		5	0	0	0	0	0		5	0	0	0	0	0		0	2	2	0	0 * *	4##
(Ileum)	[5]						[0]						[0]						[4]					
No remarkable change																											
(Sciatic nerve)	[5]						[0]						ĺ	0]						E .	4]					
No remarkable change																											
(Bone marrow of femur)	[5]						[0]						ı	0]						[4]					
No remarkable change																											
(Lung)	[0]						Ĺ	1]						[0]						[1]					
Accumulation, foam cell								0	1	0	0	0	1									1	0	0	0	0	0
Hemorrhage								1	0	0	0	0	0									0	1	0	0	0	1
(Skin)	[1]						- [0]						Į	1]						[0]					
Ulcer	0		1	0	0	1									0	0	1	0	0	1.							
Crust	0		1.	0	0	1									0	0	1	0	0	1							
Hyperplasia, epithelium	0	0	1	0	0	1									0	0	1	0	0	1							

^{-,} Negative; ±, Very slight; +, Slight; ++, Moderate; +++, Severe; Pos., Total of positive grade [], Number of animals examined

^{**,} Significantly different from control p<0.01 (Two-tailed Mann-Whitney U test)
##, Significantly different from control p<0.01 (One-tailed Fisher exact test)

- 5 3

Table 10-2-1 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Histopathological findings in males at the end of the recovery period

Group Grade		Co	ntr ±				Pos.		10	00 ±	mg/ +	kg ++	+++	Pos.
(Liver) Fatty change, periportal	[5] 0	5	0	0	0	5	[5]	2	2	0	0	4
(Spleen) Hematopoiesis, extramedullary Deposit, hemosiderin Dilatation, sinus	[5] 0 0 5	1 1 0	4 4 0	0 0 0	0 0 0	5 5 0	ĺ	5] 0 0 4	0 0 1	5 0 0	0 5 0	0, 0** 0	5 5 1
(Stomach) No remarkable change	ĺ	5]						[5]					
(Lung) Hemorrhage	[1] 0	1	0	0	0	1.	[2] 0	2	0	0	0	2

^{-,} Negative; \pm , Very slight; \dagger , Slight; \dagger , Moderate; \dagger , Severe Pos., Total of positive grade

^{[],} Number of animals examined

^{**,} Significantly different from control p<0.01 (Two-tailed Mann-Whitney U test)

Table 10-2-2 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Histopathological findings in females at the end of the recovery period

Group Grade		Co —	ntr ±	ol +	++	+++	Pos.		10	00 ±	mg/ +	kg ++	+++	Pos.
(Liver) Fatty change, periportal	ĺ	5] 0	5	0	0	0	5	Į	4] 0	4	0	0	0	4
(Spleen) Hematopoiesis, extramedullary Deposit, hemosiderin	ĺ	5] 0 0	3	2 4	0	0	5 5	. [4] 0 0	3	1 0	0 4	0	4
(Stomach) Squamous hyperplasia, diffuse, forestomach	Į	5] 5	0	0	0	0	0	-	4] 3	1	0	0	0	1

^{-,} Negative: ±, Very slight: +, Slight: ++, Moderate: +++, Severe
Pos., Total of positive grade
[], Number of animals examined
**, Significantly different from control p<0.01 (Two-tailed Mann-Whitney U test)

Table 10-3 Twenty-eight-day repeat dose oral toxicity study with subsequent 14-day recovery test of TP in rats

Histopathological findings in females died during the dosing period

Group Grade		1000 - ±	mg/ +	kg ++	+++	Pos.
Brain)	[2]				
No remarkable change						
Spinal cord)	[2]				
No remarkable change						
Heart)	[2)				
No remarkable change						
Liver)	[2]				
No remarkable change						
Thymus)	[2]				
No remarkable change						
(Spleen)	[2]				
Hematopoiesis, extramedullary		0 0		0	0	2
Deposit, hemosiderin		1 1	0	0	0	1
Kidney)	[2]				
Basophilic tubule, cortex		0 1		0	0	2
Hypoplasia, unilateral, left side		1 0	0	1	0	1
Urinary bladder)	[2]				
No remarkable change						
Adrenal gland)	[2]				
No remarkable change						
(Stomach)	[2]				
Squamous hyperplasia, focal,						
forestomach		1 0	0	1	0	1
Ileum)	[2	1				
No remarkable change	_	-				
(Sciatic nerve)	[2	1				
No remarkable change	_	-				
Bone marrow of femur)	1 2	1				
No remarkable change	• -	•				
Lung)	[2	1				
No remarkable change	• -	•				
(Esophagus)	[1	1				
Perforation		ó o	1	0	0	1
Hemorrhage, submucosa		0 0		ő	Õ	ī
Hemorrhage, adventitia		0 0		1	ő	1
Skin)	[2		-	_	-	
Crust		i o	1	0	0	1
Ulcer		1 0	1	ő	Ö	1

^{-,} Negative; ±, Very slight; +, Slight; ++, Moderate; +++, Severe Pos., Total of positive grade
[], Number of animals examined