1, 3, 5-トリス (2-プロペニル) イソシアヌル酸の チャイニーズ・ハムスター培養細胞を 用いる染色体異常試験

厚生労働省医薬局審査管理課化学物質安全対策室 委託

財団法人 食品薬品安全 シアー 素 野 研 乳前

[目 次]

	頁
要 約	1
試験目的	2
材料および方法	2
1. 被験物質	2
2. 陽性対照物質	2
3. 細胞および培養条件	3
4. S9 反応液	3
5. 被験物質調製液の調製	3
6. 細胞增殖抑制試験	4
7. 染色体異常試験	5
8. 染色体分析	6
結果および考察	 6
参考文献	8
Table 1	9
Table 2	10
Table 3	11
Table 4	12
Fig. 1	13

1, 3, 5-トリス (2-プロペニル) イソシアヌル酸のチャイニーズ・ハムスター肺由来細胞 (CHL/IU 細胞) を用いる染色体異常試験を実施し、陰性の結果を得た。

S9 mix 非存在下および存在下で短時間処理(6 時間処理後 18 時間の回復時間)した場合、50%の増殖抑制濃度はそれぞれ 1.5 mg/mL および 2.0 mg/mL と推定された。また、連続処理(24 時間)した場合の50%の増殖抑制濃度は 1.0 mg/mL と推定された。

これらの結果に基づき、2.5 mg/mL (10 mmol/L) の濃度を最高処理濃度とし、5 段階の濃度群 (0.16、0.31、0.63、1.3、2.5 mg/mL、公比 2) を設定して短時間処理法による染色体異常試験を実施した。染色体分析に先立ち、細胞増殖率の測定および分裂指数の分析を行い、染色体分析を行う3 濃度群 (0.63、1.3、2.5 mg/mL) を決定し、染色体分析を実施した。その結果、S9 mix 非存在下で短時間処理した中濃度群および高濃度群において、染色体の構造異常を有する細胞の統計学的な有意差が認められたが、その出現率はそれぞれ4.0%および4.5%であった。また、倍数性細胞についても、S9 mix 非存在下で短時間処理した中濃度群で統計学的に有意な増加が認められたが、その出現率は1.0%であった。これらの出現率は過去の陰性対照群の平均出現率と比較した場合には統計学的にも有意差のないほど低頻度であることから、生物学的には陰性であると判断した。S9 mix 存在下で短時間処理した場合には、構造異常を有する細胞および倍数性細胞の統計学的な有意差は認められなかった。

S9 mix 非存在下および存在下の短時間処理において、陰性の結果が得られたことから、50%の増殖抑制濃度の2倍の濃度に相当する2.0 mg/mLの濃度を最高処理濃度とし、5 段階の濃度群(0.13、0.25、0.50、1.0、2.0 mg/mL、公比2)を設定して連続処理法による染色体異常試験を実施した。また、S9 mix 存在下で短時間処理した場合、構造異常および倍数性細胞ともに誘発されるという報告(祖父尼、1999)があることから、濃度設定を変更(0.50、1.0、1.5、2.0、2.5 mg/mL)してS9 mix 存在下の短時間処理法による染色体異常試験も実施した。細胞増殖率の測定および分裂指数の分析結果から、染色体分析を行う3濃度群(連続処理:0.25、0.50、1.0 mg/mL、短時間処理:1.5、2.0、2.5 mg/mL)を決定し、染色体分析を実施した結果、いずれの処理群においても、構造異常を有する細胞および倍数性細胞の統計学的な有意差は認められなかった。

以上の結果より、1, 3, 5-トリス(2-プロペニル)イソシアヌル酸は今回の試験条件下で CHL/IU 細胞に染色体異常を誘発しないと判断した。

[試験目的]

OECD 既存化学物質安全性点検に係る毒性調査事業の一環として、1,3,5-トリス(2-プロペニル)イソシアヌル酸の染色体異常誘発作用を評価するため、チャイニーズ・ハムスター肺由来細胞(CHL/IU 細胞)を用いる染色体異常試験を実施した。なお、本試験は、「新規化学物質等に係る試験の方法について」(昭和62年3月31日、環保業第237号、薬発第306号、62基局第303号、一部改正平成9年10月31日、環保安第287号、衛生第127号、平成09・10・31基局第2号)および「OECD化学物質試験法ガイドライン473/ほ乳動物培養細胞を用いる染色体異常試験」(1997年7月21日採択)に基づき、「化学物質 GLP」(平成12年3月1日改正、環保安第41号、生衛発第268号、平成12・02・14基局第1号)に準拠して実施した。

[材料および方法]

1. 被験物質

被験物質である 1, 3, 5-トリス (2-プロペニル) イソシアヌル酸 [略称: TPIA、別名:トリアリルイソシアヌレート、英名:1, 3, 5-tris (2-propenyl) isocyanuric acid、CAS No.: 1025-15-6、分子量: 249.27、ロット番号: 純度:99.12 wt%、製造:

」は淡黄色液体または白色固体であり、 から提供された後、 冷暗所で保管(被験物質受領日から処理最終日までの実測値:2~8℃)した。被験物質 の物理化学的性状等をAppendix 1 に示す。

2. 陽性対照物質

陽性対照物質として用いたマイトマイシン C (MMC、ロット番号:366AAK、協和醗酵工業) およびシクロホスファミド (CP、ロット番号:108H0568、Sigma Chemical) を日局注射用水 (ロット番号:K2B80 および K2F74、大塚製薬工場) に溶かし、用時調製して試験に用いた。

3. 細胞および培養条件

CHL/IU 細胞は染色体数のモードは 25 本で、染色体異常の検出感度にすぐれていることから、染色体異常の検出に常用されている。この細胞を JCRB 細胞バンクより入手 (1988年2月入手、入手時の継代数4)し、継代後、液体窒素 (-196°C)中に凍結保存 (凍結保存時の継代数21および23)した。その細胞(倍加時間約15時間、マイコプラズマの汚染なし)を、解凍後、継代4、5、8、7代で試験に用いた。

培養には、仔牛血清(CS、ロット番号: 18060874、Cansera International)を 10 vol% 添加したイーグル MEM 培養液(10%CS/MEM)を用い、 CO_2 インキュベーター(5%CO₂、37%)内で培養した。 イーグル MEM 培養液は、イーグル MEM 培地「ニッスイ」① 粉末(日水製薬)を処方に従って調製したものを用いた。

4. S9 反応液

S9 (ロット番号:RAA-461、2002 年 3 月製造、RAA-467、2002 年 7 月製造および RAA-468、2002 年 8 月製造、キッコーマン)は、フェノバルビタールと5,6-ベンゾフラボン を投与した 7 週齢の雄 Sprague-Dawley 系ラットの肝臓から調製したものを購入し、使用時まで超低温槽 (-80°C) に保管した。グルコース-6-リン酸(G-6-P、Sigma Chemical)、 β -ニコチンアミドアデニンジヌクレオチドリン酸(β -NADP*、オリエンタル酵母工業)および KCI を蒸留水に溶かし、混合液として超低温槽(-80°C)に保管し、使用時はこれに S9、 $MgCl_2$ および HEPES(pH 7.2)を加え、S9 mix とした。試験には、10% CS/MEM:S9 mix を 25:5 の割合で混和した S9 反応液(3 mL/ディッシュ)を加えて処理を行った(各成分の最終濃度:5 vol% S9、0.83 mmol/L G-6-P、0.67 mmol/L G-NADP*、0.83 mmol/L G-6-P、0.67 mmol/L G-6-P、0.67 mmol/L G-0.83 mmol/L G-6-P、0.67 mmol/L G-6-P、0.83 mmol/L G-6-P、0.67 mmol/L G-0.83 mmol/L G-6-P、0.67 mmol/L G-0.85 mmol/L G-6-P、0.67 mmol/L G-0.86 mmol/L G-0.87 mmol/L G-0.87 mmol/L G-0.87 mmol/L G-0.89 mmol/L G-0.89 mmol/L G-0.89 mmol/L G-0.90 mmol/L G-0.90 mmol/L G-0.89 mmol/L G-0.90 mmol/L

5. 被験物質調製液の調製

溶解性および懸濁性の予備検討の結果、被験物質は水に不溶で、ジメチルスルホキシド (DMSO) に溶解したことから、DMSO (ロット番号:DWL9370、和光純薬工業)を溶媒 (陰性対照)とし試験に用いた。被験物質を所定量秤量し、溶媒に溶解させて原液 (細胞増殖抑制試験および染色体異常試験ともに 250 mg/mL)を用時調製した。それを溶媒で希釈して種々の濃度の被験物質調製液を調製し、これらの調製液を1 vol%添加

して処理を行った。なお、被験物質を溶媒に溶解させた際、発熱、発泡、変色などの変化はなかった。

6. 細胞增殖抑制試験

染色体異常試験に用いる被験物質の処理濃度を決定するため、被験物質の細胞増殖におよぼす影響を調べた。CHL/IU 細胞を、0.25%トリプシンを用いてはがした後、 4×10^3 個/mL の細胞懸濁液とし、その 5 mL (2×10^4 個)をプラスチックディッシュ(直径 6 cm)に播種した。培養開始 3 日目に、以下の手順で短時間処理および連続処理を行った。

S9 mix 非存在下および存在下で短時間処理する場合、各ディッシュの培養液をそれぞれ 10% CS/MEM および S9 反応液(3 mL/ディッシュ)と交換した後、溶媒(陰性対照)または各濃度の被験物質調製液(30 μ L)を各ディッシュに添加し 6 時間処理した。その後、リン酸緩衝塩類溶液(PBS、 Ca^{2+} および Mg^{2+} を含む)で洗浄し、10% CS/MEM でさらに 18 時間培養した。また、連続処理する場合には、各ディッシュの培養液を 10% CS/MEM(5 mL/ディッシュ)と交換した後、溶媒(陰性対照)または各濃度の被験物質調製液(50 μ L)を各ディッシュに添加し 24 時間処理した。

いずれの処理条件においても、2.5 mg/mL(10 mmol/L)を最高処理濃度とし、0.078 ~2.5 mg/mL の濃度範囲(公比 2)で処理を行った。各群 2 枚のディッシュを用いた。なお、最初にプラスチックディッシュを用いて試験を行ったところ、被験物質添加によりディッシュ底面が溶解したことから、その結果は無効とし、その後の試験ではガラスディッシュを用いた。処理液中の沈殿の有無を肉眼により観察したところ、処理開始時では 1.3 mg/mL および 2.5 mg/mL の濃度で沈殿が認められたが、処理終了時では 2.5 mg/mL の濃度においてのみ沈殿が認められた。

培養終了後、培養液を捨て、0.02%EDTA 含有 PBS (Ca^{2+} および Mg^{2+} 不含)をディッシュあたり 5 mL 加えて細胞をはがした。その細胞懸濁液 0.5 mL を 9 mL の ISOTON $^{@}$ II (Beckman Coulter) に加え、コールターカウンター (Model D、Coulter Electronics)を用いてディッシュあたりの細胞数を測定し、被験物質処理群の陰性対照群に対する相対増殖率を求めた。

7. 染色体異常試験

細胞増殖抑制試験において、TPIA は CHL/IU 細胞の増殖を濃度依存的に抑制した (Fig. 1)。S9 mix 非存在下および存在下で短時間処理した場合の 50%の増殖抑制濃度 はそれぞれ 1.5 mg/mL および 2.0 mg/mL と推定された。また、24 時間連続処理した場合、50%の増殖抑制濃度は 1.0 mg/mL と推定された。

このことから染色体異常試験において、短時間処理群では 10 mmol/L の濃度である 2.5 mg/mLを最高濃度とし、公比 2 で計 5 濃度を設定して試験を実施した。また、連続処理群においては、50%の増殖抑制濃度の 2 倍の濃度に相当する 2.0 mg/mLを最高処理 濃度とし、公比 2 で計 5 濃度を設定して試験を実施した。S9 mix 存在下の短時間処理群については、2.5 mg/mLを最高濃度とし、濃度設定を変更して確認試験を実施した。

染色体異常試験における試験操作は、細胞増殖抑制試験とほぼ同様に行った。すべての処理系列で被験物質処理群、陰性(溶媒)対照群と陽性対照群を設けた。陽性対照群については、S9 mix 非存在下および存在下の短時間処理では、MMC(20 μ g/mL)および CP(1 μ g/mL)を最終濃度がそれぞれ 0.1 μ g/mL および 10 μ g/mL となるように添加した。また、連続処理では、MMC(20 μ g/mL)を最終濃度が 0.05 μ g/mL となるように添加した。1 濃度あたり2 枚のディッシュを用いた。また、実験毎に無処理対照群も設けた。

培養終了の2時間前に、コルセミドを最終濃度が0.1 µg/mLとなるように添加した。培養終了後、培養液を捨て、0.02%EDTA含有PBS(Ca²+およびMg²+不含)をディッシュあたり5 mL加えて細胞をはがし、15 mLの遠沈管に移した。陰性対照群と被験物質処理群については、0.5 mLの細胞懸濁液を9 mLのISOTON®IIに加え、コールターカウンターを用いて細胞数の測定を行った。残りの細胞懸濁液については、遠沈(1000~1500 rpm、約5分)し、上清を捨て、3 mLの0.075 mol/L KCl 水溶液を加え、約30分間低張処理を行った。低張処理後、固定液(メタノール: 氷酢酸 = 3:1 (v/v))を低張液の約2倍量加えて静かに攪拌し、遠沈した。その後、上清を捨て、再び新鮮な固定液を加えて遠沈した。この固定操作を数回行った後、少量の固定液を加えて細胞を懸濁し、その少量をスライドグラス(あらかじめフロスト部分に試験系識別番号、コード番号およびスライド番号を記入)上に滴下し、そのまま風乾した。1 ディッシュあたり6 枚のスライド標本を作製した。

作製したスライド標本を 3 vol%ギムザ液 (pH 6.8 の 1/15 mol/L リン酸緩衝液で希釈 調製) で染色後、水ですすいで風乾した。試験計画番号、試験系識別番号および標本 作製の日付を明示したスライドケースに、スライド標本をコード番号順に入れて保存した。

8. 染色体分析

染色体分析に先立って、各処理系列の相対増殖率および分裂指数を調べ、20%以上の相対増殖率で、かつ 2 ディッシュともに 0.5%以上の分裂指数の場合を観察可能と判断した。

ディッシュ1枚から得られたスライド標本4枚を、4人の観察者がそれぞれ処理条件が分からない状態で分析した。染色体がよく拡がり、かつ散逸していない分裂中期細胞を捜し、1 群あたり 200 個 (100 細胞/ディッシュ) の分裂中期細胞について構造異常の種類と数を、1 群あたり 800 個 (400 細胞/ディッシュ) の分裂中期細胞について倍数性細胞 (染色体数が 38 本以上) の数を調べた。その結果に基づいて構造異常を持つ細胞と倍数性細胞の出現率を求めた。ギャップを除く染色体異常の分類は、日本環境変異原学会・哺乳動物試験分科会 いによる分類法に基づいて行った。ギャップについては、染色分体幅よりも狭い非染色性部位と定義し、構造異常誘発性の判定には含めないこととした。

構造異常(ギャップを除く)を有する細胞および倍数性細胞の出現数について、陰性(溶媒)対照群と被験物質処理群間および陽性対照群間で、フィッシャーの直接確率法²⁾ (p<0.01、片側)により有意差検定を実施した。また、コクラン・アーミテッジの傾向性検定³⁾ (p<0.01、片側)により用量依存性の有無を検討した。これらの検定結果を参考とし、生物学的な観点からの判断を加味して染色体異常誘発性の評価を行った。

[結果および考察]

細胞増殖抑制試験の結果より、5 濃度(0.16、0.31、0.63、1.3、2.5 mg/mL、公比 2)を設定し、短時間処理法による試験を実施した。

染色体分析に先立ち、細胞増殖率の測定および分裂指数の分析を行った結果 (Tables 1、2)、染色体分析が可能な最高濃度(20%以上の増殖率でかつ 0.5%以上の 分裂指数を示した濃度)は、S9 mix 非存在下および存在下の短時間処理ともに 2.5 mg/mLとなった。従って、染色体分析に際してはそれらの濃度を含め以下 3 濃度群を観察対象とし、染色体分析を行った。その結果、TPIA は、S9 mix 非存在下で短時間処理した場合、中濃度群および高濃度群において染色体の構造異常を有する細胞が統計学的に有意に増加したが、その出現率はそれぞれ 4.0%および 4.5%と低頻度であり、過去の陰性対照群の平均出現率である 1%と比較した場合には統計学的にも有意差のない出現率であることから、生物学的には陰性であると判断した (Table 1)。また、倍数性細胞については、中濃度群で統計学的に有意な増加が認められたが、その出現率は 1.0%と低く、同様に生物学的には陰性であると判断した (Table 1)。一方、S9 mix 存在下で短時間処理した場合には、いずれの処理群においても染色体の構造異常を有する細胞および倍数性細胞の統計学的に有意な増加は認められなかった (Table 2)。

短時間処理法による試験で陰性の結果が得られたことから、細胞増殖抑制試験の結果に基づき、5 濃度 (0.13、0.25、0.50、1.0、2.0 mg/mL、公比 2) を設定して 24 時間連続処理法による試験を実施した。また、TPIA は S9 mix 存在下で短時間処理した場合、CHL/IU 細胞に染色体の構造異常および倍数性細胞を誘発することが報告されている4)ことから、設定濃度を変更 (0.50、1.0、1.5、2.0、2.5 mg/mL) して確認試験を実施した。細胞増殖率の測定および分裂指数の分析を行った結果 (Tables 3、4)、染色体分析が可能な最高濃度は、連続処理群では1.0 mg/mL、短時間処理群では2.5 mg/mLとなったことから、その濃度を含め以下 3 濃度群を観察対象とし、染色体分析を行った。その結果、いずれの処理群においても染色体の構造異常を有する細胞および倍数性細胞の統計学的に有意な増加は認められなかった (Tables 3、4)。

陽性対照物質として用いた MMC は、S9 mix 非存在下で短時間処理および 24 時間連続処理した場合において染色体の構造異常を誘発し(Tables 1、3)、CP は S9 mix 存在下で短時間処理した場合において染色体の構造異常を誘発した(Tables 2、4)。これらの陽性対照物質の結果より、本実験系の成立が確認された。

TPIA は、S9 mix 非存在下での短時間処理では生物学的に陰性であると判断したが、24 時間連続処理した場合にも染色体異常誘発は認められず、S9 mix 非存在下での処理条件において染色体異常を誘発しないことが確認された。一方、TPIA は、S9 mix 存在下で短時間処理した場合、染色体の構造異常および倍数性細胞を誘発することが報告されている⁴⁾。この結果を踏まえて、当該試験では 2 回の試験を実施したが、いずれも陰性の結果となった。祖父尼 ⁴⁾のデータでは、出現率にばらつきがあるものの再現性のある陽

性結果が得られている。試験に使用した細胞や試験条件および処理濃度にほとんど差がないことから、これらの結果の違いが何に起因するかは不明であるが、試験に使用した TPIA に含まれる不純物の影響である可能性も考えられる。

なお、TPIA については、当研究所で実施した細菌を用いる復帰突然変異試験で陰性の結果が得られている 50 。また、当該試験と並行して実施した 1, 3, 5-トリス(3, 5-ジー $^{-tert}$ -ブチルー 4 -ヒドロキシベンジル)イソシアヌル酸の染色体異常試験(試験計画番号:G-01-077)では、構造異常に関しては陰性、倍数性細胞に関しては陽性の結果が得られている 60 。

以上の結果より、TPIA は、本試験条件下で CHL/IU 細胞に染色体異常を誘発しないと結論した。

[参考文献]

- 1) 日本環境変異原学会・哺乳動物試験分科会編:「化学物質による染色体異常アトラス」, 朝倉書店, 東京(1988)
- 2) 吉村 功 編:「毒性・薬効データの統計解析、事例研究によるアプローチ」, サイエン ティスト社, 東京 (1987)
- 3) 吉村 功, 大橋靖夫 編集:「毒性試験講座 14、毒性試験データの統計解析」, 地人 書館, 東京(1992)
- 4) 祖父尼 俊雄 監修:「染色体異常試験データ集 改訂 1998 年版」, エル・アイ・シー, 東京, p. 449-500 (1999)
- 5) 原 巧:「1, 3, 5-トリス (2-プロペニル) イソシアヌル酸の細菌を用いる復帰突然変異 試験」, 試験計画番号:M-01-092, (2003)
- 6) 田中 憲穂: 「1, 3, 5-トリス (3, 5-ジ-tert-ブチル-4-ヒドロキシベンジル) イソシアヌル酸のチャイニーズ・ハムスター培養細胞を用いる染色体異常試験」, 試験計画番号: G-01-077, (2003)

Table 1 Chromosome analysis of Chinese harnster cells (CHL/IU) treated with 1,3,5-tris (2-propenyl) isocyanuric acid (TPIA)** for 6 h without S9 mix

Group	Concen- tration (mg/mL)	S 9 mix		Concurrent 2) cell growth (%)	Mitotic ³⁾ index (%)	Number of cells analyszed				-		berra		Others ⁵⁾		r of cells rrations -gap (%)	Number ⁶⁾ of polyploid cells (%)	Trend test -gap POL
Non-treatme	ent					100 100 200	0 1	0 0 0	0 0	0 0 0	0 0	0 0 0	0 1 1	0 0 0	0 (0.0) 1 (1.0) 1 (0.5)	0 (0.0) 0 (0.0) 0 (0.0)	0 (0.0) 0 (0.0) 0 (0.0)	
Negative 1)	0	_	6 - (18)	100		100 100 200	1 0	0 0	0 0 0	0 0	0 0	0 0 0	1 0	0 0	1 (1.0) 0 (0.0) 1 (0.5)	0 (0.0) 0 (0.0) 0 (0.0)	0 (0.0) 0 (0.0) 0 (0.0)	
TPIA	0.16		6 - (18)	104								no	ot obser	rved				
TPIA	0.31		6 - (18)	102								no	ot obser	rved				
TPIA	0.63	_	6 - (18)	106		100 100 200	0 0 0	0 1	0 1	0 0 0	0 1 1	0 0 0	0 3 3	0 0 0	0 (0.0) 3 (3.0) 3 (1.5)	0 (0.0) 3 (3.0) 3 (1.5)	0 (0.0) 0 (0.0) 0 (0.0)	
TPIA	1.3	_	6 - (18)	82		100 100 200	0 1 1	5 2 7	0 1 1	0 1 1	0 1 1	0 0 0	5 6 11	0 0 0	3 (3.0) 6 (6.0) 9 (4.5)	3 (3.0) 5 (5.0) 8 *(4.0)	6 (1.5) 2 (0.5) 8 *(1.0)	+ -
TPIA	2.5	_	6 - (18)	50	6.0, 5.0	100 100 200	0 1 1	1 1 2	7 1 8	6 8	0 0	0 0 0	10 9 19	0 0 0	6 (6.0) 3 (3.0) 9 (4.5)	6 (6.0) 3 (3.0) 9 *(4.5)	1 (0.3) 2 (0.5) 3 (0.4)	
MMC	0.1 μg/mL		6 - (18)			100 100 200	1 2 3	19 31 50	54 53 107	1 1 2	0 0	0 0 0	75 87 162	0 0	47 (47.0) 50 (50.0) 97 (48.5)	47 (47.0) 49 (49.0) 96 *(48.0)	2 (0.5) 1 (0.3) 3 (0.4)	_

Abbreviations: gap, chromatid gap and chromosome gap; ctb, chromatid break; cte, chromatid exchange; csb, chromosome break; cse, chromosome exchange (dicentric and ring); mul, multiple aberrations; POL, polyploid; MMC, mitomycin C.

¹⁾ Dimethyl sulfoxide was used as solvent and added at the level of 1 vol% per dish. 2) Cell number, representing cytotoxicity, was measured with a Coulter Counter. 3) Metaphase frequency was calculated by counting 500 cells in each dish. 4) When the number of aberrations in a cell was more than 9, the cell was scored as having 10 aberrations. 5) Others, such as attenuation and premature chromosome condensation, were excluded from the number of structural aberrations. 6) Eight hundred cells were analyzed in each group. 7) Cochran-Armitage's trend test was done at p<0.01 (one-side).

^{*,} Significantly different from the negative control at p<0.01 (one-side) by Fisher's exact probability test.

^{**,} Purity was 99.12 wt%, and diallylpropyl isocyanurate + monoallyldipropyl isocyanurate (0.86%), BHT (50 ppm) and water (0.02%) were contained as impurity.

Table 2 Chromosome analysis of Chinese hamster cells (CHL/IU) treated with 1,3,5-tris (2-propenyl) isocyanuric acid (TPIA)** for 6 h with S9 mix

Group	Concen- tration	S 9 mix		Concurrent ²⁾ cell growth (%)	Mitotic ³⁾ index (%)	Number of cells	Nu	mbe	r of s	tructi	ıral a	aberra	tions	Others ⁵⁾	Number with aber		Number ⁶⁾ of polyploid cells (%)	7) Trend test
	(mg/mL)		(h)			analyzed	gap	ctb	cte	csb	cse	mul ⁴	total		+gap (%)	-gap (%)		-gap POL
Negative1)	0	+	6 - (18)	100		100	0	0	.0	0	1	0	1	0	1 (1.0)	1 (1.0)	2 (0.5)	
						100	0	0	0	_0	0_	0	0	0	0 (0.0)	0 (0.0)	1 (0.3)	
						200	0	0	0	0	1	0	1	0	1 (0.5)	1 (0.5)	3 (0.4)	
TPIA	0.16	+	6 - (18)	110								n	ot obsei	rved				
TPIA	0.31	+	6 - (18)	109								n	ot obser	rved		· <u>-</u>		
TPIA	0.63	+	6 - (18)	103		100	0	1	0	0	0	0	1	0	1 (1.0)	1 (1.0)	1 (0.3)	
						100	1	3	0	0	0	0	4	0	4 (4.0)	3 (3.0)	1 (0.3)	
						200	1	4	0	0	0	0	5	0	5 (2.5)	4 (2.0)	2 (0.3)	
TPIA	1.3	+	6 - (18)	110		100	1	2	0	1	0	0	4	0	4 (4.0)	3 (3.0)	3 (0.8)	
						100	0	2	1	0	0	0	3	0	2 (2.0)	2 (2.0)	0 (0.0)	
						200	1	4	1	1	0	0	7	0	6 (3.0)	5 (2.5)	3 (0.4)	
TPIA	2.5	+	6 - (18)	32	3.4, 9.0	100	0	1	3	1	0	0	5	0	3 (3.0)	3 (3.0)	2 (0.7)	
						100	1	0	0	0	0	0	1	0	1 (1.0)	0 (0.0)	0 (0.0)	
						200	1	1	3	1	0	0	6	0	4 (2.0)	3 (1.5)	$\frac{1}{2}$ (0.3) ⁸⁾	
CP	10 μg/mL	+	6 - (18)			100	3	16	29	4	0	0	52	1	38 (38.0)	37 (37.0)	0 (0.0)	
	_		. ,			100	4	13	18	4	0	0	39	1	26 (26.0)	23 (23.0)	0 (0.0)	
						200	7	29	_47	8	0	0	91	2	64 (32.0)	60 *(30.0)	0 (0.0)	

Abbreviations: gap, chromatid gap and chromosome gap; ctb, chromatid break; cte, chromatid exchange; csb, chromosome break; cse, chromosome exchange (dicentric and ring); mul, multiple aberrations; POL, polyploid; CP, cyclophosphamide.

1) Dimethyl sulfoxide was used as solvent and added at the level of 1 vol% per dish. 2) Cell number, representing cytotoxicity, was measured with a Coulter Counter. 3) Metaphase frequency was calculated by counting 500 cells in each dish. 4) When the number of aberrations in a cell was more than 9, the cell was scored as having 10 aberrations. 5) Others, such as attenuation and premature chromosome condensation, were excluded from the number of structural aberrations. 6) Eight hundred cells were analyzed in each group. 7) Cochran-Armitage's trend test was done at p<0.01 (one-side). 8) Six hundred and eighty-five cells were analyzed.

^{*,} Significantly different from the negative control at p<0.01 (one-side) by Fisher's exact probability test.

^{**,} Purity was 99.12 wt%, and diallylpropyl isocyanurate + monoallyldipropyl isocyanurate (0.86%), BHT (50 ppm) and water (0.02%) were contained as impurity.

Table 3 Chromosome analysis of Chinese hamster cells (CHL/IU) continuously treated with 1,3,5-tris (2-propenyl) isocyanuric acid (TPIA)** for 24 h without S9 mix

Group			Concurrent ²⁾ cell growth	Mitotic 3) index (%)	Number of cells	Nu	ımbe	r of s	struct	ural :	aberrat	ions	Others ⁵⁾		of cells	Number 6) of polyploid cells (%)	Trend test -gap POL
Oroup	(mg/mL)	(h)	(%)		analyzed	gap	ctb	cte	csb	cse	mul	total	-	+gap (%)	-gap (%)		
Non-treatme	ent				100 100	0	0	0	0	0	0	0 2	0	0 (0.0) 2 (2.0)	0 (0.0) 1 (1.0)	2 (0.5) 0 (0.0)	
				-	200	1	0	0	1	0	0		0	2 (1.0)	1 (0.5)	2 (0.3)	
Negative 1)	0	24	100		100	0	0	0	0	0	0	0	0	0 (0.0)	0 (0.0)	1 (0.3)	
				_	100	0	3	0	0	0	0	3	0	3 (3.0)	3 (3.0)	0 (0.0)	
					200	_0_	3	0	0	0	0.	3	0	3 (1.5)	3 (1.5)	1 (0.1)	
TPIA	0.13	24	96								no	t obser	ved				
TPIA	0.25	24	93		100	0	0	0	0	1	0	1	0	1 (1.0)	1 (1.0)	0 (0.0)	
			•	_	100_	1	_0	0	_0	0	_0	1	0	1 (1.0)	0 (0.0)	0 (0.0)	
				_	200	1_	0	0	0	1	0	2	0	2 (1.0)	1 (0.5)	0 (0.0)	
TPIA	0.50	24	84		100	0	0	0	0	0	0	0	0	0 (0.0)	0 (0.0)	0 (0.0)	
				_	100	0	1	0	_1	0	0	2	0	2 (2.0)	2 (2.0)	2 (0.5)	
				_	200	0	1	0	1	0	0	2	0	2 (1.0)	2 (1.0)	2 (0.3)	
TPIA	1.0	24	59	2.2, 1.2	100	0	3	0	0	0	0	3	0	3 (3.0)	3 (3.0)	2 (0.5)	
				_	100	0_	1	0	0	0	0	1	0_	1 (1.0)	1 (1.0)	0 (0.0)	
					200	0	4	0	0	0	0	4	0	4 (2.0)	4 (2.0)	2 (0.3)	
TPIA	2.0	24	26	Tox, Tox				1	not o	bserv	ed due	to ext	reme cyto	toxicity			
MMC	0.05 μg/m	L 24			100	4	29	46	2	1	0	82	0	55 (55.0)	54 (54.0)	0 (0.0)	
				_	100	2	24	52	0	_0	0_	78	0	50 (50.0)	48 (48.0)	0 (0.0)	
					200	6	53	98	2	1_	0	160	0	105 (52.5)	102 *(51.0)	0 (0.0)	

Abbreviations: gap, chromatid gap and chromosome gap; ctb, chromatid break; cte, chromatid exchange; csb, chromosome break; cse, chromosome exchange (dicentric and ring); mul, multiple aberrations; POL, polyploid; MMC, mitomycin C; Tox, cytotoxic.

¹⁾ Dimethyl sulfoxide was used as solvent and added at the level of 1 vol% per dish. 2) Cell number, representing cytotoxicity, was measured with a Coulter Counter. 3) Metaphase frequency was calculated by counting 500 cells in each dish. 4) When the number of aberrations in a cell was more than 9, the cell was scored as having 10 aberrations. 5) Others, such as attenuation and premature chromosome condensation, were excluded from the number of structural aberrations. 6) Eight hundred cells were analyzed in each group. 7) Cochran-Armitage's trend test was done at p<0.01 (one-side).

^{*,} Significantly different from the negative control at p<0.01 (one-side) by Fisher's exact probability test.

^{**,} Purity was 99.12 wt%, and diallylpropyl isocyanurate + monoallyldipropyl isocyanurate (0.86%), BHT (50 ppm) and water (0.02%) were contained as impurity.

Table 4 Chromosome analysis of Chinese hamster cells (CHL/IU) treated with 1,3,5-tris (2-propenyl) isocyanuric acid (TPIA)** for 6 h with S9 mix (confirmation test)

Group	Concen- tration	S 9 mix		Concurrent ²⁾ cell growth	Mitotic ³⁾ index	Number of cells									Number of cells with aberrations			Number ⁶⁾ of polyploid	Trend test 7)
Group	(mg/mL)	пих	(h)	(%)	(%)	analyzed	gap	ctb	cte	csb	csè	mul 4	total	Others ⁵⁾		ap (%)	-gap (%)	cells (%)	-gap POL
Negative ¹⁾	0 ·	+	6 - (18)	100		100 100	0	3	0	4	0	0	7 1	0	3	(3.0)	3 (3.0)	1 (0.3) 1 (0.3)	
						200	0	4	0	4	0	- 0-	8	0	4	(2.0)	4 (2.0)	2 (0.3)	
TPIA	0.50	- +	6 - (18)	99								n	ot obse	rved	<u> </u>				
TPIA	1.0	+	6 - (18)	90								n	ot obse	rved					
TPIA	1.5	+	6 - (18)	74		100	0	2	3	6	0	0	11	0	4	(4.0)	4 (4.0)	1 (0.3)	
						100	0	1	0	0	0	0	1	0	1	(1.0)	1 (1.0)	1 (0.3)	
						200	0	3	3	6	0	0	12	0	5	(2.5)	5 (2.5)	2 (0.3)	•
TPIA	2.0	+	6-(18)	43		100	1	0	0	0	0	0	1	0	1	(1.0)	0 (0.0)	2 (0.5)	
						100	0	_ 3	0_	0	0	0	3	0	_3_	(3.0)	3 (3.0)	1 (0.3)	
		_				200	1	3	0	0	0	0	4	0	4	(-2.0)	3 (1.5)	3 (0.4)	
TPIA	2.5	+	6 - (18)	34	5.8, 7.0	100	0	1	2	0	0	0	3	0	1	(1.0)	I (1.0)	1 (0.3)	
						100	0	0	0	0	0	0	0	0	_0_	(0.0)	0 (0.0)	1 (0.3)	
						200	_0_	_1	_2_	0	_0_	_0_	3	0	1	(0.5)	1 (0.5)	2 (0.3)	
CP	10 μg/mL	+	6 - (18)			100	2	7	21	0	1	0	31	0	25	(25.0)	23 (23.0)	1 (0.3)	
						100	_1_	14	19	1	0	0	35	0	31	(31.0)	30 (30.0)	1 (0.3)	
						200	3	21	40	1	1	()	66	0	56	(28.0)	53 *(2 <u>6.5</u>)_	2 (0.3)	

Abbreviations: gap, chromatid gap and chromosome gap; ctb, chromatid break; cte, chromatid exchange; csb, chromosome break; cse, chromosome exchange (dicentric and ring); mul, multiple aberrations; POL, polyploid; CP, cyclophosphamide.

1) Dimethyl sulfoxide was used as solvent and added at the level of 1 vol% per dish. 2) Cell number, representing cytotoxicity, was measured with a Coulter Counter. 3) Metaphase frequency was calculated by counting 500 cells in each dish. 4) When the number of aberrations in a cell was more than 9, the cell was scored as having 10 aberrations. 5) Others, such as attenuation and premature chromosome condensation, were excluded from the number of structural aberrations. 6) Eight hundred cells were analyzed in each group. 7) Cochran-Armitage's trend test was done at p<0.01 (one-side).

*, Significantly different from the negative control at p<0.01 (one-side) by Fisher's exact probability test.

^{**,} Purity was 99.12 wt%, and diallylpropyl isocyanurate + monoallyldipropyl isocyanurate (0.86%), BHT (50 ppm) and water (0.02%) were contained as impurity.

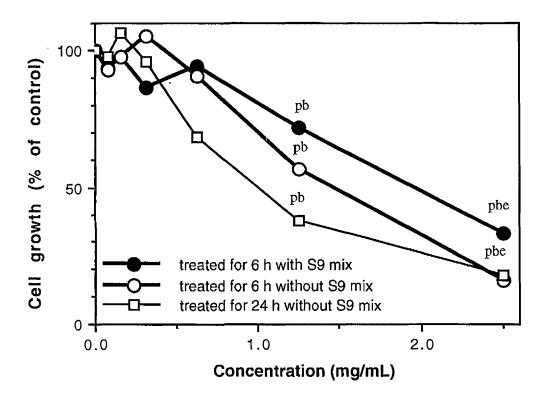


Fig.1 Growth inhibition of CHL/IU cells treated with 1,3,5-tris (2-propenyl)isocyanuric acid

pb: Precipitation was observed at the beginning of the treatment by the naked eye.

pbe: Precipitation was observed at the beginning and the end of the treatment by the naked eye.