


Name: COMPLETE / SUBSTANCE : benzenesulfonamide / benzenesulfonamide / 98-10-2 Fri, 16 Dec 2022, 16:24:13+0900 /

Legal entity owner: National Institute of Health Sciences

**Printing date:** 2022-12-16T16:24:13.265+09:00

## **Table of Contents**

| 0/0                                                                         | 1    |
|-----------------------------------------------------------------------------|------|
| National Institute of Health Science                                        | 2    |
| benzenesulfonamide                                                          | 3    |
| CORE                                                                        | 3    |
| 1 General information                                                       | 3    |
| 1.10 Assessment approach (assessment entities)                              | 3    |
| Assessment approach (assessment entities)                                   | 3    |
| OECD                                                                        |      |
| D Health Effects                                                            | 4    |
| 67 Repeated dose toxicity: oral                                             | 4    |
| Repeated dose toxicity: oral.001                                            |      |
| 70 Genetic toxicity in vitro                                                |      |
| Genetic toxicity in vitro.001                                               |      |
| Genetic toxicity in vitro.002                                               |      |
| 73 Toxicity to reproduction                                                 |      |
| Toxicity to reproduction.001                                                |      |
| DOMAIN                                                                      | 30   |
| Substance                                                                   | 30   |
| Substance                                                                   | . 30 |
| References                                                                  | 31   |
| Reference Substances                                                        | . 31 |
| benzenesulphonamide                                                         | 31   |
| Test Materials                                                              | . 33 |
| benzenesulfonamide                                                          | 33   |
| Literatures                                                                 | 34   |
| A reproduction/developmental toxicity screening test in rats treated orally |      |
| with benzensulphonamide                                                     | 34   |
| In Vitro Chromosomal Aberration Test of benzenesulfonamide on Cultured      |      |
| Chinese Hamster Cells                                                       | . 35 |
| Reverse mutation test of benzenesulfonamide in Bacteria                     | . 36 |
| Twenty-eight-day Repeat Dose Oral Toxicity Test of benzenesulfonamide       |      |
| in Rats                                                                     | 37   |
| Legal Entities                                                              | 38   |
| National Institute of Health Sciences                                       | 38   |

## **DOSSIER:**

**UUID:** 0

**Dossier UUID:** 

**Author:** 

Date: 2022-12-16T16:24:13.088+09:00

Remarks:

## Dossier header -

## **Dossier submission type**

Name

Complete table of contents

Version

core 7.0

Name (given by user)

## **Dossier subject** -

#### **Dossier subject**

benzenesulfonamide / benzenesulfonamide / 98-10-2

**Public name** 

**Submitting legal entity** 

National Institute of Health Science

Dossier creation date/time

Fri, 16 Dec 2022, 16:24:13+0900

**Used in category** 

## **LEGAL\_ENTITY: National Institute of Health Science**

UUID: f51e7b54-9211-4863-90ce-fcf8a155d647

Dossier UUID: Author:

**Date:** 2022-11-07T16:24:02.822+09:00

Remarks:

## **General information** -

Legal entity name

National Institute of Health Science

## benzenesulfonamide

## **CORE**

## **General information**

Assessment approach (assessment entities)

FIXED\_RECORD: Assessment approach

UUID: 2555ffdf-66f9-392b-bc0b-202a7dab8391

Dossier UUID: Author:

**Date:** 2018-03-06T14:58:59.000+09:00

Remarks:

## **OECD**

#### **Health Effects**

Repeated dose toxicity: oral

ENDPOINT\_STUDY\_RECORD: Repeated dose toxicity: oral.001

UUID: 1714385f-7fdd-41bd-b111-39e3944c99e4

Dossier UUID: Author:

Date: 2022-12-16T16:20:14.131+09:00

Remarks:

## Administrative data -

#### **Endpoint**

short-term repeated dose toxicity: oral

#### Type of information

experimental study

#### Adequacy of study

key study

#### **Robust study summary**

true

#### Used for classification

false

#### **Used for SDS**

false

#### Reliability

1 (reliable without restriction)

#### Rationale for reliability incl. deficiencies

guideline study Reliability 1

#### Data source -

#### Reference

Twenty-eight-day Repeat Dose Oral Toxicity Test of benzenesulfonamide in Rats / MHLW, Japan / study report

#### Data access

data published

## Materials and methods -

#### **Test guideline**

#### **Qualifier**

equivalent or similar to guideline

#### Guideline

OECD Guideline 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents)

#### Qualifier

according to guideline

#### Guideline

other: Guideline for 28-Day Repeated Dose Toxicity Test in Mammalian Species (Chemical Substances Control Law of Japan)

#### **GLP** compliance

ves

#### Test material

#### **Test material information**

benzenesulfonamide

#### Specific details on test material used for the study

- Name of test material (as cited in study report): benzenesulfonamide
- Analytical purity: 99.6%
- Lot No.: GF01
- Storage condition of test material: at a cold (temperature 2-6  $^{\circ}$ C) and dark place, with airtight stopper.
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

#### Test animals

#### **Species**

rat

common rodent species

#### **Strain**

other: Crl:CD(SD)

#### Sex

male/female

#### Details on test animals or test system and environmental conditions

**TEST ANIMALS** 

- Source: Charles River Japan, Inc.
- Age at study initiation: 5 weeks old
- Weight at study initiation: male 168 g (150-177 g), female 143 g (135-152 g)
- Housing: Animals were individually housed in a metallic cage with wire mesh bottoms
- Diet: Solid feed (MR stock: Nosan Corporation) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation and quarantine period:7-8 days

#### **ENVIRONMENTAL CONDITIONS**

- Temperature (°C): 22.0-22.8 °C
- Humidity (%): 53-62%
- Air changes (per hr): 10 or more
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 7:00~19:00)

## **Administration / exposure**

#### Route of administration

oral: gavage

#### **Vehicle**

methylcellulose

#### Analytical verification of doses or concentrations

yes

#### **Duration of treatment / exposure**

28 days

#### Frequency of treatment

once a day

#### **Doses / concentrations**

| -            |                                     |
|--------------|-------------------------------------|
| Dose / conc. |                                     |
| 0            | mg/kg bw/day (actual dose received) |
|              |                                     |
| Dose / conc. |                                     |
| 6            | mg/kg bw/day (actual dose received) |
|              |                                     |
| Dose / conc. |                                     |
| 30           | mg/kg bw/day (actual dose received) |
|              |                                     |
| Dose / conc. |                                     |
| 150          | mg/kg bw/day (actual dose received) |
|              |                                     |

#### No. of animals per sex per dose

10/sex (0, 150 mg/kg bw/day) 5/sex (16, 30 mg/kg bw/day)

#### **Control animals**

yes, concurrent vehicle

#### Details on study design

- Dose selection rationale: Doses in this test were set based on the results of the following study: 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0 (olive oil), 2, 6, 20, 60, or 200 mg/kg bw /day). At 60 mg/kg/day and higher, increased relative liver and kidney weights and changes in blood chemistry were observed. At 200 mg/kg bw/day, changes in body weight were observed. On the basis of these effects, a dose level of 150 mg/kg was selected as the maximum dose expecting to induce the toxic changes, while a dose level of 6 mg/kg bw/day was selected as the lowest dose expecting to induce no toxicological effects. A dose level of 30 mg/kg bw/day was selected as a middle dose.

- Rationale for animal assignment (if not random): Body weight-balanced randomization
- Post-exposure recovery period in satellite groups: 14 days

#### Examinations -

#### Observations and examinations performed and frequency

LINICAL OBSERVATIONS: Yes

- Time schedule: every day during the administration period (4 times a day) and the recovery period (at least once a day)

#### **DETAILED CLINICAL OBSERVATIONS: Yes**

The functional observational battery testing (FOB) was performed on all animals. Among the mea sures in the FOB, detailed clinical observations were made before the initiation of dosing. Thereafter, detailed clinical observations were made once a week in dosing and recovery periods. Sensory motor reflexes, forelimb and hindlimb grip strengths, and motor activity were measured on week 4 of administration period (main/recovery group animals) and week 2 of recovery period (recovery group animals).

#### **BODY WEIGHT: Yes**

- Time schedule for examinations: Before administration (on days 1, 7, 14, 21 and 28 of the admin istration period, days 7 and 14 of the recovery period) and the necropsy days after completion of every period.

#### FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

- Food consumption: Yes. Once a week for 24-h (males: on days 5, 12, 19 and 26 of the administration period and days 5 and 12 of the recovery period. females: on days 4, 11, 18 and 25 of the administration period and days 4 and 11 of the recovery period)

#### OPHTHALMOSCOPIC EXAMINATION: No

#### HAEMATOLOGY: Yes

- Time schedule for collection of blood: the after completion of the administration and recovery periods
- Anaesthetic used for blood collection: ether
- Animals fasted: Yes (overnight)
- How many animals: all animals

#### CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood: the day after completion of the administration and recovery periods
- Anaesthetic used for blood collection: ether
- Animals fasted: Yes (overnight)
- How many animals: all animals

#### **URINALYSIS: Yes**

- Time schedule for collection of urine: on weeks 4 of the administration period and weeks 2 of the re covery period.
- Metabolism cages used for collection of urine: Yes

#### NEUROBEHAVIOURAL EXAMINATION: No

#### Sacrifice and pathology

GROSS PATHOLOGY: Yes

ORGAN WEIBHT: Yes [brain, pituitary gland, thyroid, adrenal, spleen, heart, liver, kidney, thymus, testis, epididymis, ovary]

HISTOPATHOLOGY: Yes [brain (cerebrum, cerebellum and medulla oblongata), pituitary gland, spinal cord (cervical, thoracical, lumber), thymus, thyroid (including parathyroid), adrenal glands, spleen, he art, stomach, liver, duodenum, jejunum, ileum (including Peyer's patches), cecum, colon, rectal, mes enteric lymph nodes, submandibular lymph nodes, trachea, lung, kidney, bladder, testis, epididymis, prostate, seminal vesicles, ovary, uterus, vagina, eye, bone marrow (femur) and the sciatic nerve.

#### **Statistics**

As for parametric data (grip strength, locomotor activity, body weight, body weight gain, food consumption, hematology and clinical chemistry data, organ weights), the values of means and standard deviations were calculated per group. When more than three groups exist in the test group, Bartlett test for variance was done, and if the variance was homogenous, ANOVA was applied. If the variance was not homogenous or data was non-parametric (differential WBC percentage, urinalysis data), Kruskal-Wallis rank sum test was used. Consequently, if the result was significant, Dunnett multiple comparison or Dunnett-typed method was used for detection of statistical significance against control group. When the number of the test group was two, F-test was used as for parametric data. Then, s tudent's t-test or Aspin-Welch's t-test was applied depending on the result of homogeneity of variance. While, as for non-parametric data, Man-Whitney's U-test was applied. Furthermore, as for categorized data (incidence of abnormal findings in clinical observation, detailed observation, sensory functional examination, necropsy and histopathology), Fischer's exact test was used. In any tests, level of significance was set at 5%.

#### **Results and discussion**

#### **Results of examinations**

#### **Clinical signs**

effects observed, treatment-related

#### **Description (incidence and severity)**

At 150 mg/kg bw/day, one male died on day 21. This animal showed decrease in locomotor activity, pale skin, prone position, and convulsion. Decreased locomotor activity was also observed in 4 out of 9 males and one out of 10 females at 150 mg/kg bw/day. Transient salivation was also observed at this dose.

#### Mortality

mortality observed, treatment-related

#### **Description (incidence)**

At 150 mg/kg bw/day, one male died on day 21.

#### Body weight and weight changes

effects observed, treatment-related

#### **Description (incidence and severity)**

Body weight and body weight gain were significantly decreased at 30 mg/kg bw/day and higher in both sexes. After the recovery period, body weight was still significantly low, but body weight gain was significantly increased.

#### Food consumption and compound intake (if feeding study)

effects observed, treatment-related

#### **Description (incidence and severity)**

Food consumption was significantly decreased at 6 mg/kg bw/day and higher in males and 30 mg/kg bw/day and higher in females.

#### Haematological findings

effects observed, treatment-related

#### **Description (incidence and severity)**

At the end of the administration period, no effects were observed. Decreased Hb and Ht were observed at the end of the recovery period. These effects were considered to be due to low food consumption and low body weight.

#### **Clinical biochemistry findings**

effects observed, treatment-related

#### **Description (incidence and severity)**

At 150 mg/kg bw/day, significantly high values of ALT, T-Cho, and T-Bil in males, and significantly high values of BUN and T-Cho in females were observed. At the end of the recovery period, there were significantly decreased Alb and Crea in both sexes, and significantly increased ALT and decreased Glu and BUN in males. These changes observed at the end of the administration period dented to recover.

#### **Urinalysis findings**

no effects observed

#### Organ weight findings including organ / body weight ratios

effects observed, treatment-related

#### **Description (incidence and severity)**

Absolute weights of the heart and pituitary gland in both sexes, spleen and epididymis in males, and brain in females were significantly decreased due to low body weights at 150 mg/kg bw/day. Relative weights of the brain were increased in males at 30 and 150 mg/kg bw/day and in females at 150 mg/kg bw/day. Relative weights of the heart, liver, and kidney in both sexes and adrenal gland and testis in males were also significantly increased at 150 mg/kg bw/day. These changes observed at the end of the administration period dented to recover.

#### **Gross pathological findings**

no effects observed

#### Histopathological findings: non-neoplastic

effects observed, treatment-related

#### **Description (incidence and severity)**

Mineralization of the lung alvenolar septa and kidney papilla/pelvis was observed in both sexes at 1 50 mg/kg bw/day. Hypertrophy of the centrilobular hepatocytes was observed in both sexes at 150 mg/kg bw/day. Hyaline droplet of the proximal tubular epithelium in the kidney observed in male animals at 30 mg/kg bw/day and higher were considered to be male rat-specific  $\alpha$ -2 $\mu$ 0 globulin nephro pathy. Hyperplasia of transitional cells in the urinary bladder was observed at 30 mg/kg bw/day and higher in both sexes. Sulfonamides are known to produce urinary bladder hyperplasia, but the effect is specific to rats due to urinary composition. At the end of the recovery period, all of the changes except mineralization in the lung had resolved or showed a tendency to resolve.

#### Effect levels -

| <b>Key result</b> false  |                                     |
|--------------------------|-------------------------------------|
| Dose descriptor<br>NOAEL |                                     |
| Effect level             |                                     |
| 6                        | mg/kg bw/day (actual dose received) |
| Based on act. ingr.      |                                     |

#### Sex

male/female

#### **Basis for effect level**

body weight and weight gain

Male and female rats administered 30 and 150 mg/kg bw/day showed significantly decreased b ody weight.

food consumption and compound intake

Male and female rats administered 30 and 150 mg/kg bw/day showed significantly decreased food consumption.

histopathology: non-neoplastic

changes in the urinary bladder were observed at 30 mg/kg bw/day

## Target system / organ toxicity -

#### Key result

false

#### **Critical effects observed**

ves

#### Lowest effective dose / conc.

30 mg/kg bw/day (nominal)

#### Organ

bladder

#### Treatment related

yes

#### Dose response relationship

yes

## Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF98-10-2b.pdf

## **Applicant's summary and conclusion**

#### **Executive summary**

A repeated-dose 28-day oral toxicity study was performed in accordance with the Japanese guidelines (similar to OECD TG 407). Male and female rats (5 or 10 animals/sex/dose) were administered benzenesulfonamide for 28 days at 0 (vehicle:1 w/v% methyl cellulose solution), 6, 30, and 150 mg/kg bw/day. Five out of 10 males with this administration at 0 and 150 mg/kg bw/day were used as a recovery assessment group and examined after a 14-day recovery period. At 150 mg/kg bw/day, one male died and decrease in locomotor activity was observed in both sexes during the administration period. Male and female rats administered 30 and 150 mg/kg bw/day showed significantly decreased food consumption and body weight. Upon the administration of benzenesulfonamide at 150 mg/kg bw/day, the following effects on the liver were also observed in both sexes: significantly increased relative

organ weight with centrilobular hypertrophy and changes in blood chemical parameters. Mineralization was observed in the kidney and lung at 150 mg/kg bw/day in both sexes. Moreover, hyperplasia of transitional cells in the urinary bladder was observed at 30 mg/kg bw/day and higher in both sexes. Sulfonamides are known to produce urinary bladder hyperplasia, but the effect is specific to rats due to urinary composition. At the end of the recovery period, all of the changes except mineralization in the lung had resolved or showed a tendency to resolve. Based on decreases in food consumption and body weight and histopathological changes in the urinary bladder at 30 mg/kg bw/day, the NOAEL of the repeated-dose toxicity was determined to be 6 mg/kg bw/day for male and female rats.

#### **Genetic toxicity in vitro**

ENDPOINT\_STUDY\_RECORD: Genetic toxicity in vitro.001

UUID: e8c3ace4-eb02-488a-a13f-f7add8d8aca7

Dossier UUID: Author:

Date: 2022-12-16T16:21:23.677+09:00

Remarks:

#### Administrative data -

#### **Endpoint**

in vitro gene mutation study in bacteria

#### Type of information

experimental study

#### Adequacy of study

key study

#### **Robust study summary**

true

#### **Used for classification**

false

#### **Used for SDS**

false

#### Reliability

1 (reliable without restriction)

#### Rationale for reliability incl. deficiencies

guideline study Reliability 1

#### Data source -

#### Reference

Reverse mutation test of benzenesulfonamide in Bacteria / MHLW, Japan / study report

#### **Data access**

data published

## Materials and methods -

#### **Test guideline**

#### Qualifier

according to guideline

#### Guideline

OECD Guideline 471 (Bacterial Reverse Mutation Assay)

in vitro gene mutation study in bacteria

#### Qualifier

according to guideline

#### Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals genetic toxicity in vitro, other

#### **GLP** compliance

yes

#### Type of assay

bacterial reverse mutation assay in vitro gene mutation study in bacteria

#### Test material -

#### **Test material information**

benzenesulfonamide

#### Specific details on test material used for the study

- Name of test material (as cited in study report): benzenesulfonamide
- Analytical purity: 99.2%
- Lot/batch No.:EWG6537 (Wako)
- Stability under test conditions: Stable
- Storage condition of test material: dark place at room temperature (21.1-25.3 C degree )

#### **Method**

#### Species / strain

#### Species / strain / cell type

S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2 bacteria

#### Metabolic activation

with and without

#### Metabolic activation system

rat liver, induced by phenobarbital and 5,6-benzoflavone

#### Test concentrations with justification for top dose

Dose-range finding test (-S9 mix and +S9 mix): 0 (vehicle), 1.22, 4.88, 19.5, 78.1, 313, 1250, and 5000  $\mu$ g/plate

In range-finding studies, growth inhibition was not observed on all plates with concentration of up to 5000 µg/plate with/without metabolic activation.

Main bacterial reverse mutation test (-S9 mix and +S9 mix): 0 (vehicle), 313, 625, 1250, 2500, and 5000 µg/plate

#### Vehicle / solvent

- Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The test substance was soluble in DMSO, but not in water.

#### **Controls**

#### **Untreated negative controls**

yes

#### **Negative solvent / vehicle controls**

ves

#### **Positive controls**

ves

#### Positive control substance

9-aminoacridine

(9-aminoacridine acid), -S9 mix, TA1537

sodium azide

-S9 mix, TA1535

other: 2-aminoanthracene (+S9 mix, all strains), 2-methoxy-6-chloro-9-[3-(2-chloroethyl)-aminopro pylamino]acridine-2HCl, -S9mix TA100, WP2, TA98

#### Details on test system and experimental conditions

METHOD OF APPLICATION: Preincubation

The mixtures were incubated at 37 C degree with shaking (90 times/min).

DURATION

Preincubation period: 20 minExposure duration: 48 hours

NUMBER OF REPLICATIONS: 3

#### **DETERMINATION OF CYTOTOXICITY**

- Method: Cell growth

#### **Evaluation criteria**

Criteria for determining a positive result were as follows; A 2–fold or more increase in the number of revertant colonies compared with the solvent control, a concentration–related increase in the number of revertant colonies, and a reproducible increase in the number of revertant colonies.

#### **Statistics**

No statistic method was used for judging of results.

## **Results and discussion**

#### **Test results**

#### **Key result**

false

#### Species / strain

S. typhimurium TA 1535 bacteria

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Untreated negative controls validity

valid

#### Positive controls validity

valid

#### **Key result**

false

#### Species / strain

S. typhimurium TA 1537 bacteria

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Untreated negative controls validity

valid

#### Positive controls validity

valid

#### Key result

false

#### Species / strain

S. typhimurium TA 98

bacteria

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Untreated negative controls validity

valid

#### Positive controls validity

valid

#### Key result

false

#### Species / strain

S. typhimurium TA 100

bacteria

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Untreated negative controls validity

valid

#### Positive controls validity

valid

#### Key result

false

#### Species / strain

E. coli WP2 uvr A pKM 101

bacteria

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Untreated negative controls validity

valid

#### Positive controls validity

valid

#### Additional information on results

TEST-SPECIFIC CONFOUNDING FACTORS

- Precipitation: Precipitation was not observed on any plates with/without metabolic activation.

#### COMPARISON WITH HISTORICAL CONTROL DATA:

In all test conditions and in all tested strains, the number of revertant colonies of solvent controls and positive controls were within the range of historical control data.

## Any other information on results incl. tables -

Figures and Tables (in Japanese) are available in the following full report of the study.http://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF98-10-2e.pdf

Tables (in English) are attachted to this document. Please download the export file to see the Tables.

## Overall remarks, attachments

#### **Attachments**

#### Attached (sanitised) documents for publication

98-10-2\_Ames.xlsx / 26.894 KB (application/vnd.openxmlformats-officedocument.spreadsheetml.sheet)

## **Applicant's summary and conclusion**

#### **Conclusions**

Interpretation of results: Negative

#### **Executive summary**

In a bacterial reverse mutation assay using S. typhimurium TA100, TA1535, TA98, and TA1537 and E. coli WP2uvrA (OECD TG 471), benzenesulfonamidewas negative with or without metabolic activation.

#### ENDPOINT\_STUDY\_RECORD: Genetic toxicity in vitro.002

UUID: 2fde2394-2aba-4eeb-ab5a-acaf0d8feaee

Dossier UUID: Author:

Date: 2022-12-16T16:22:01.200+09:00

Remarks:

### Administrative data

#### **Endpoint**

in vitro cytogenicity / chromosome aberration study in mammalian cells

#### Type of information

experimental study

#### Adequacy of study

key study

#### **Robust study summary**

true

#### **Used for classification**

false

#### **Used for SDS**

false

#### Reliability

1 (reliable without restriction)

#### Rationale for reliability incl. deficiencies

guideline study Reliability 1

#### **Data source**

#### Reference

In Vitro Chromosomal Aberration Test of benzenesulfonamide on Cultured Chinese Hamster Cells. / MHLW, Japan / study report

## Materials and methods

#### **Test guideline**

#### Qualifier

according to guideline

#### Guideline

OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test) in vitro cytogenicity / chromosome aberration study in mammalian cells

#### Qualifier

according to guideline

#### Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals genetic toxicity in vitro, other

#### **GLP** compliance

yes

#### Type of assay

in vitro mammalian chromosome aberration test in vitro cytogenicity / chromosome aberration study in mammalian cells

#### Test material -

#### **Test material information**

benzenesulfonamide

#### Specific details on test material used for the study

- Name of test material (as cited in study report): benzenesulfonamide
- Analytical purity: 99.2%
- Lot/batch No.:EWG6537 (Wako)
- Stability under test conditions: Stable
- Storage condition of test material: dark place at room temperature (21.1-25.3 C degree)

#### Method

#### Target gene

Chromosome

#### Species / strain

#### Species / strain / cell type

other: Chinese hamster lung(CHL/IU) cells

#### Metabolic activation

with and without

#### Metabolic activation system

rat liver, induced by phenobarbital and 5,6-benzoflavone

#### Test concentrations with justification for top dose

- +/-S9 mix (short-term treatment): 0, 100, 200, 400, 800, 1600 μg/mL
- -S9 mix (continuous treatment): 0, 100, 200, 400, 800, 1600 µg/mL

Test concentrations were set based on the following results of a preliminary study: short term treatment (-S9): growth inhibition was not observed at 5000  $\mu$ g/mL short term treatment (+S9): growth inhibition was not observed at 5000  $\mu$ g/mL continuous treatment (-S9): growth inhibition was not observed at 5000  $\mu$ g/mL, but 90% growth inhibition was observed at 5000  $\mu$ g/mL

According to the Guideline, the maximum concentration was set at 10 mmol/L (1600 ug/mL).

#### Vehicle / solvent

- Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The test substance was soluble in DMSO, but not in water.

#### **Controls**

#### Negative solvent / vehicle controls

yes

#### **Positive controls**

ves

#### Positive control substance

benzo(a)pyrene

+S9 mix

mitomycin C

-S9 mix

#### Details on test system and experimental conditions

METHOD OF APPLICATION: Exposure duration: [continuous treatment]: 24 hrs

[short-term treatment]:6 hrs + 18 hr SPINDLE INHIBITOR: Colcemid NUMBER OF REPLICATIONS: 2

NUMBER OF CELLS EVALUATED: 500 cells / plate (1000 cells/concentration)

DETERMINATION OF CYTOTOXICITY

- Method: relative total growth

#### **Evaluation criteria**

For the evaluation of the frequencies of structural aberrations and of polyploidy induced, the following criteria were employed.

Appearance incidence of cells with chromosomal aberrations: Negative (-): < 5%; equivocal ( $\pm$ ): 5-10%; positive (+): > 10%.

Finally, the substance is positive when the incidence is considered to be dose-related and reproducible.

#### **Statistics**

not used

## **Results and discussion**

#### **Test results**

#### **Key result**

false

#### Species / strain

other: Chinese hamster lung (CHL/IU) cells

#### Metabolic activation

with and without

#### Genotoxicity

negative

#### Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

#### Vehicle controls validity

valid

#### Positive controls validity

valid

## Any other information on results incl. tables -

Figures and Tables (in Japanese) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF98-10-2f.pdf

Tables (in English) are attachted to this document. Please download the export file to see the Tables.

## **Overall remarks, attachments**

#### **Attachments**

#### Attached (sanitised) documents for publication

98-10-2\_CA Tables.xlsx / 25.046 KB (application/vnd.openxmlformats-officedocument.spreadsheetml.sheet)

## **Applicant's summary and conclusion**

#### **Conclusions**

Interpretation of results: Negative

#### **Executive summary**

An in vitro chromosomal aberration test using CHL/IU cells (OECD TG 473) showed positive result with metabolic activation.

21

#### **Toxicity to reproduction**

ENDPOINT\_STUDY\_RECORD: Toxicity to reproduction.001

UUID: 05f7bda6-7b60-4623-befb-3860a7656a92

Dossier UUID: Author:

Date: 2022-12-16T16:23:53.886+09:00

Remarks:

#### Administrative data -

#### **Endpoint**

screening for reproductive / developmental toxicity

#### Type of information

experimental study

#### Adequacy of study

key study

#### **Robust study summary**

true

#### **Used for classification**

false

#### **Used for SDS**

false

#### Reliability

1 (reliable without restriction)

#### Rationale for reliability incl. deficiencies

guideline study Reliability 1

#### **Data source**

#### Reference

A reproduction/developmental toxicity screening test in rats treated orally with benzensulphonamide / MHLW, Japan / study report

#### **Data access**

data published

## Materials and methods

#### Test guideline

#### Qualifier

according to guideline

#### Guideline

OECD Guideline 421 (Reproduction / Developmental Toxicity Screening Test)

#### **GLP** compliance

yes

#### Test material

#### **Test material information**

benzenesulfonamide

#### Specific details on test material used for the study

- Name of test material (as cited in study report): benzenesulfonamide
- Purity: 99.9%
- Lot/batch No.: FQ2GG
- Stability under test conditions: Stable
- Storage condition of test material: a cool (3-8 °C) and dark place (in a refrigerator), with an airtight s topper
- Dosing solution storage condition: under a cool (3-6 °C) place (in a refrigerator), in a brown glass bottle

#### Test animals

#### **Species**

rat

#### **Strain**

other: Crl:CD(SD)

#### Sex

male/female

#### Details on test animals or test system and environmental conditions

**TEST ANIMALS** 

- Source: Charles River Laboratories Japan, Inc. Atsugi
- Age at study initiation: 10 weeks old
- Weight at study initiation: Males: 374-509 (average 442) g; Females: 228-286 (average 260) g
- Housing: Steel wire-mesh cage (254 mm x 350 mm x 170 mm), pregnant rats were housed in a pla stic Econ cage with bedding (340 mm x 400 mm x 185 mm) on GD17 and after.
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: 20 days

#### **ENVIRONMENTAL CONDITIONS**

- Temperature (°C): 22-24
- Humidity (%): 49-61
- Air changes: 10-15 times / hr
- Photoperiod: 12 hrs dark / 12 hrs light (07:00-19:00)

## **Administration / exposure**

#### Route of administration

oral: gavage

#### Vehicle

other: 1 w/v% methyl cellulose solution

#### **Details on mating procedure**

- M/F ratio per cage: 1:1
- Length of cohabitation: up to 14 days
- Proof of pregnancy: [vaginal plug / sperm in vaginal smear] referred to as [day 0] of pregnancy

#### Analytical verification of doses or concentrations

yes

#### **Duration of treatment / exposure**

Males were dosed for 28 days, including a 14-day pre-mating period and subsequent mating period. Females were dosed for 40-53 days, including 14-day pre-mating, mating, and gestation periods, and until lactation day 3.

#### Frequency of treatment

once a day

#### **Doses / concentrations**

| Dose / conc. |                                     |
|--------------|-------------------------------------|
| 0            | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
| 3            | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
| 10           | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
| 30           | mg/kg bw/day (actual dose received) |

#### No. of animals per sex per dose

12/sex/dose

#### **Control animals**

yes, concurrent vehicle

#### Details on study design

- Dose selection rationale: Doses in this test were set based on the 28-day repeated dose oral toxicity test (Repeated dose toxicity: oral.001). A dose level of 30 mg/kg was selected as the maximum dose expecting to induce the toxic changes, and then dose levels of 10 and 3 mg/kg bw/day were selected as a middle dose and a minimum dose levels, respectively, in accordance with a common ratio of 3.
- Rationale for animal assignment (if not random): Body weight-balanced randomization

#### **Examinations** -

#### Parental animals: Observations and examinations

AGE SIDE OBSERVATIONS: Yes

- Time schedule:

Males and females: 3 times/day

**BODY WEIGHT: Yes** 

- Time schedule for examinations:

Males: Days 1, 8, 15, and 22 and the day of necropsy

Females: Days 1, 8, 15, and 22 during the precopulation period; gestation days 0, 7, 14, and 20; I actation days 0 and 4; and the day of necropsy.

actation days o and 4, and the day of hecrop

FOOD CONSUMPTION: Yes

Males: Days 2, 8, 15 in dosing period

Females: Days 2, 8, 15; gestation days 1, 7, 14, and 20; lactation days 2 and 4

HAEMATOLOGY: No

CLINICAL CHEMISTRY: No

**URINALYSIS: No** 

#### **Oestrous cyclicity (parental animals)**

Vaginal smears were collected from all females in the main groups and microscopically examined every day from the day after the start of administration until the day copulation was confirmed. During the pre-mating administration period, vaginal smear pictures were classified as proestrus, estrus, metestrus or diestrus and examined for the frequency of estrus and interval between estruses (estrous cycle). During the mating period, vaginal smears were examined for the presence of sperm.

#### Litter observations

PARAMETERS EXAMINED: The following parameters were examined in F1 offspring [number and sex of pups, stillbirths, live births, postnatal mortality, presence of gross anomalies, and weight]. GROSS EXAMINATION OF DEAD PUPS: Yes, for external abnormalities.

#### Postmortem examinations (parental animals)

SACRIFICE:

Male animals: Rats were euthanized by exsanguination under ether anesthesia on the day after the I ast administration.

Maternal animals: Rats were euthanized by exsanguination under ether anesthesia on day 4 of lactati on.

**GROSS PATHOLOGY: Yes** 

HISTOPATHOLOGY: Yes (epididymis, prostate, seminal vesicle, testis, ovary, uterus, vagina, and gross abnormal sites)

ORGAN WEIGHTS, Yes: Testes and epididymis

#### **Statistics**

The data were analyzed for homogeneity of variance by the Bartlett test. If variances were homogeneous, data was analyzed by the Dunnett test, whereas heterogeneous data was analyzed by the Steel test (p<0.05, two-sided).

2 groups: The data were analyzed for homogeneity of variance by the F test. If variances were hom ogeneous, data was analyzed by the Student t test, whereas heterogeneous data was analyzed by the Aspin-Welch t test (p<0.05, two-sided).

Especially,

Implantation index, Stillborn index, Liveborn index, External abnormalities, Viability index: the Steel test (p<0.05 and <0.01, two-sided)

Copulation index, Fertility index, Insemination index, Delivery index: Fisher's exact test (p<0.05 and <0.01, two-sided)

#### **Reproductive indices**

Each parameter was determined by the following equations:

Copulation index (%) = (No. of copulated animals/No. of co-housed animals) × 100

Fertility index (%) = (No. of pregnant females/No. of copulated females) × 100 Insemination index (%) = (No. of pregnant females/No. of copulated males) × 100 Duration of gestation (days) = day 0 of lactation – day 0 of gestation Delivery index (%) = (No. of females delivered liveborn pups/No. of pregnant females) × 100 Implantation index (%) = (No. of implantation sites/No. of corpora lutea) × 100 Stillborn index (%) = (No. of stillborn pups/Total No. of pups born) × 100 Liveborn index (%) = (No. of liveborn pups/Total No. of pups born) × 100 External abnormalities (%) = (No. of pups with external abnormalities/No. of liveborn pups) × 100 Sex ratio = No. of liveborn male pups/(No. of liveborn male pups)

#### Offspring viability indices

Viability index (%) = (No. of surviving pus on day 4 after birth/No. of liveborn pups on day 0 after birth)  $\times$  100

## Results and discussion -

## Results: P0 (first parental generation) —————

## General toxicity (P0) —

#### **Clinical signs**

no effects observed

#### Mortality

no mortality observed

#### Body weight and weight changes

effects observed, treatment-related

#### **Description (incidence and severity)**

Body weights were significantly decreased at 30 mg/kg bw/day and body weight gain was sign ificantly decreased at 100 mg/kg bw/day in males.

#### Food consumption and compound intake (if feeding study)

effects observed, treatment-related

#### **Description (incidence and severity)**

Food consumption was significantly low at 30 mg/kg bw/day in males.

#### Organ weight findings including organ / body weight ratios

effects observed, treatment-related

#### Description (incidence and severity)

Absolute and relative weights of the ovary were also significantly increased at 30 mg/kg bw/day.

#### **Gross pathological findings**

effects observed, non-treatment-related

#### **Description (incidence and severity)**

White focus in the epididymis was found in one males at 10 mg/kg bw/day.

#### Histopathological findings: non-neoplastic

effects observed, treatment-related

#### **Description (incidence and severity)**

Hyperplasia/hypertrophy of the transitional cells in the urinary bladder was observed at 10 and 30 mg/kg bw/day in males. In females, hyperplasia/hypertrophy of the transitional cells in the urinary bladder was observed upon administration of benzenesulfonamide at doses ≥ 3 mg/kg bw/day.

## Reproductive function / performance (P0) Reproductive function: oestrous cycle no effects observed Reproductive performance no effects observed Effect levels (P0) -Key result false **Dose descriptor NOAEL Effect level** 30 mg/kg bw/day (actual dose received) Based on act. ingr. Sex male/female Basis for effect level reproductive performance No effects on fertility **Key result** false **Dose descriptor** LOAEL Effect level 3 mg/kg bw/day (actual dose received) Based on act. ingr. Sex male/female **Basis for effect level** histopathology: non-neoplastic histopathological change in the urinary bladder Results: F1 generation -General toxicity (F1) —

Mortality / viability no mortality observed

#### Body weight and weight changes

effects observed, treatment-related

#### **Description (incidence and severity)**

The body weights of pups on postnatal day (PND) 0 and/or 4 were found to be significantly decreased at 30 mg/kg bw/day in both sexes.

## Effect levels (F1) —

#### Key result

false

#### **Dose descriptor**

**NOAEL** 

#### Generation

F1

#### Effect level

10

mg/kg bw/day (actual dose received)

#### Based on

act. ingr.

#### Sex

male/female

#### **Basis for effect level**

body weight and weight gain

the body weights of pups on postnatal day (PND) 0 and/or 4 were found to be significantly decreased at 30 mg/kg bw/day in both sexes.

## Any other information on results incl. tables -

Figures and Tables (in English) are available in the following full report of the study. http://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF98-10-2c.pdf

## **Applicant's summary and conclusion**

#### **Conclusions**

The NOAEL for the rat reproductive/developmental toxicity of benzenesulfonamide was determined to be 10 mg/kg bw/day based on decreased pup body weights at 30 mg/kg bw/day

#### **Executive summary**

A reproduction/developmental toxicity screening test (OECD TG 421) was also performed using rats. In this study, benzenesulfonamide was administered via gavage to 12 animals/sex/dose at 0 (vehicle:1 w/v% methyl cellulose solution), 3, 10, and 30 mg/kg bw/day. Males were dosed for 28 days, including a 14-day pre-mating period and subsequent mating period. Females were dosed for 40-53 days, including 14-day pre-mating, mating, and gestation periods, and until lactation day 3. Significantly decreased body weight and hyperplasia/hypertrophy of the transitional cells in the urinary bladder were observed at 10 and 30 mg/kg bw/day in males. In females, hyperplasia/hypertrophy of the transitional cells in the urinary bladder was observed upon administration of benzenesulfonamide at doses  $\geq$  3 mg/kg bw/day. Absolute and relative weights of the ovary were also significantly increased at 30 mg/kg bw/day.

There were no effects on fertility, but the body weights of pups on postnatal day (PND) 0 and/or 4 were found to be significantly decreased at 30 mg/kg bw/day in both sexes. The NOAEL for the rat reproductive/developmental toxicity of benzenesulfonamide was determined to be 10 mg/kg bw/day based on decreased pup body weights at 30 mg/kg bw/day while the lowest-observed-adverse-effect level for parental general toxicity was 3 mg/kg bw/day, based on the histopathological change in the urinary bladder.

## **DOMAIN**

#### **Substance**

SUBSTANCE: benzenesulfonamide

UUID: f596d537-c3e7-44bf-b585-e989d5d06385

Dossier UUID: Author:

Date: 2022-12-16T16:23:53.886+09:00

Remarks:

#### Substance name

benzenesulfonamide

#### Legal entity

National Institute of Health Sciences / Kawasaki / Japan

## Identification of substance

#### Reference substance

benzenesulphonamide / benzenesulfonamide / 98-10-2 / 202-637-1

EC number EC name
202-637-1 EC Inventory
CAS number CAS name

98-10-2 **IUPAC name** 

benzenesulfonamide

## Role in the supply chain

#### Manufacturer

false

#### **Importer**

false

#### Only representative

false

#### Downstream user

false

## References

## **Reference Substances**

## REFERENCE\_SUBSTANCE: benzenesulphonamide

UUID: ECB5-7ab84e8b-3c5d-4bed-bae6-4b4361df8447

Dossier UUID: Author:

Date: 2007-05-10T18:00:00.000+09:00

Remarks:

#### Reference substance name

benzenesulphonamide

#### **IUPAC** name

benzenesulfonamide

## Inventory

#### **Inventory number**

#### **Inventory name**

benzenesulphonamide

#### Inventory

**EC Inventory** 

#### **Inventory number**

202-637-1

#### **CAS** number

98-10-2

#### Molecular formula

C6H7N02S

#### **Description**

#### **CAS** number

98-10-2

## **Synonyms**

#### **Synonyms**

#### Identity

Benzenesulfonamide

#### Identity

Benzenesulfonamide

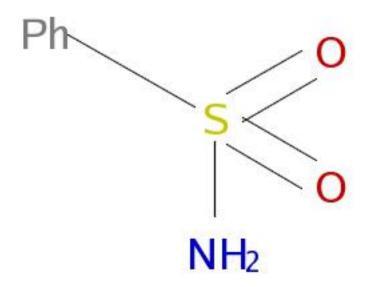
## Molecular and structural information

#### Molecular formula

C6H7N02S

#### Molecular weight

157.1903


#### **SMILES notation**

NS(=0)(=0)c1ccccc1

#### InChl

InChl=1/C6H7NO2S/c7-10(8,9)6-4-2-1-3-5-6/h1-5H,(H2,7,8,9)

#### Structural formula



## Related substances

**Group / category information** 

DSL Category: Organics

## **Test Materials**

## TEST\_MATERIAL\_INFORMATION: benzenesulfonamide

UUID: 5ef05df4-03fa-4af0-9669-2bfb6f6f6e3b

Dossier UUID: Author:

Date: 2018-03-06T15:00:30.000+09:00

Remarks:

Name

benzenesulfonamide

## Composition

#### Composition

#### Reference substance

benzenesulphonamide / benzenesulfonamide / 98-10-2 / 202-637-1

EC number EC name
202-637-1 EC Inventory
CAS number CAS name

98-10-2

**IUPAC** name

benzenesulfonamide

## Literatures

# LITERATURE: A reproduction/developmental toxicity screening test in rats treated orally with benzensulphonamide

UUID: 344feefd-0a81-43ec-a80b-54f7a38428a1

Dossier UUID: Author:

Date: 2018-03-07T11:24:27.000+09:00

Remarks:

## **General information**

#### **Reference Type**

study report

#### Title

A reproduction/developmental toxicity screening test in rats treated orally with benzensulphonamide

#### **Author**

MHLW, Japan

#### Year

2014

#### Bibliographic source

available in the web of Japan Existing Chemical Data Base (JECDB) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp

#### **Testing facility**

BoZo Research Center

#### Report number

R-1131

## LITERATURE: In Vitro Chromosomal Aberration Test of benzenesulfonamide on Cultured Chinese Hamster Cells.

UUID: 68ce0a97-383f-4a44-b004-96474746b2c3

Dossier UUID: Author:

Date: 2018-03-07T10:16:56.000+09:00

Remarks:

## **General information**

#### **Reference Type**

study report

#### Title

In Vitro Chromosomal Aberration Test of benzenesulfonamide on Cultured Chinese Hamster Cells.

#### **Author**

MHLW, Japan

#### Year

2007

#### **Bibliographic source**

available in the web of Japan Existing Chemical Data Base (JECDB) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp

#### **Testing facility**

BoZo Research Center

#### Report number

B060317

## LITERATURE: Reverse mutation test of benzenesulfonamide in Bacteria

UUID: 99eda9cb-6b68-4c85-9db1-5708603fd6a8

Dossier UUID: Author:

Date: 2018-03-07T08:55:20.000+09:00

Remarks:

## **General information**

#### **Reference Type**

study report

#### Title

Reverse mutation test of benzenesulfonamide in Bacteria

#### **Author**

MHLW, Japan

#### Year

2007

#### **Bibliographic source**

available in the web of Japan Existing Chemical Data Base (JECDB) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp

#### **Testing facility**

Bozo Research Center Inc.

## LITERATURE: Twenty-eight-day Repeat Dose Oral Toxicity Test of benzenesulfonamide in Rats

UUID: ebf5708e-b097-4a1b-81f5-621e08563109

Dossier UUID: Author:

Date: 2018-03-06T14:53:53.000+09:00

Remarks:

## **General information**

#### **Reference Type**

study report

#### Title

Twenty-eight-day Repeat Dose Oral Toxicity Test of benzenesulfonamide in Rats

#### **Author**

MHLW, Japan

#### Year

2011

#### **Bibliographic source**

available in the web of Japan Existing Chemical Data Base (JECDB) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp

#### **Testing facility**

Research institute for animal science in biochemistry and toxicology (RIAS)

#### Report number

06-088

## **Legal Entities**

## **LEGAL\_ENTITY: National Institute of Health Sciences**

UUID: IUC4-b036ff75-0f3c-323b-b200-ed5f46cf5101

Dossier UUID: Author:

Date: 2022-11-07T15:49:29.000+09:00

Remarks:

## **General information** -

#### Legal entity name

National Institute of Health Sciences

#### Remarks

Disclaimer: The contents in this document were created based on the MHLW (Ministry of Health, Labour and Welfare) peer reviewed study reports (in Japanese) in JECDB (Japan Existing Chemical Database) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp. Authorship is in the Division of Risk Assessment, the National Institute of Health Sciences, and the contents do not reflect any official MHLW opinions or any other regulatory policies.

#### Address -

#### Address 1

Tonomachi 3-25-26

#### Address 2

Kawasaki-ku

#### Postal code

210-9501

#### Town

Kawasaki

#### Region / State

Kanagawa

#### Country

Japan

JP

#### Identifiers -

#### Other IT system identifiers

#### IT system

LEO

#### ID

10767

#### IT system

**IUCLID4** 

#### ID

16558402024DIV750