

Name: OECD_SIDS / SUBSTANCE : azoicCC5 / 91-96-3 / N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide) / 91-96-3 Fri, 16 Dec 2022, 15:32:37+0900 /

Legal entity owner: National Institute of Health Sciences

Printing date: 2022-12-16T15:32:37.316+09:00

Table of Contents

0/0	1
National Institute of Health Science	2
azoicCC5 / 91-96-3	3
1 General information	3
1.1 Identification	3
Identification	3
Identification	3
7 Toxicological information	4
7.5 Repeated dose toxicity	
7.5.1 Repeated dose toxicity: oral	
Repeated dose toxicity: oral.001	4
Repeated dose toxicity: oral.002	. 13
7.6 Genetic toxicity	
7.6.1 Genetic toxicity in vitro	. 20
Genetic toxicity in vitro.001	
Genetic toxicity in vitro.002	
7.8 Toxicity to reproduction	
7.8.1 Toxicity to reproduction	
Toxicity to reproduction.001	
References	
Reference Substances	
N,N'-(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide)	
Literatures	39
A 28-day repeat dose oral toxicity test of azoicCC5 in rat with a recovery	
period of 2 weeks	39
A reproduction/developmental toxicity screening test in rats treated orally	
with azoicCC5	
A reverse mutation test of azoicCC5 using bacteria	. 41
Chromosome aberration test in cultured chinese hamster cells treated with azoicCC5	40
Legal Entities National Institute of Health Sciences	
riational institute of Health Sciences	. 43

DOSSIER:

UUID: 0
Dossier UUID:

Author:

Date: 2022-12-16T15:32:37.188+09:00

Remarks:

Dossier header -

Dossier submission type

Name

OECD SIDS

Version

core 7.0

Name (given by user)

Dossier subject

Dossier subject

azoicCC5 / 91-96-3 / N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide) / 91-96-3

Public name

Submitting legal entity

National Institute of Health Science

Dossier creation date/time

Fri, 16 Dec 2022, 15:32:37+0900

Used in category

LEGAL_ENTITY: National Institute of Health Science

UUID: f51e7b54-9211-4863-90ce-fcf8a155d647

Dossier UUID: Author:

Date: 2022-11-07T16:24:02.822+09:00

Remarks:

General information -

Legal entity name

National Institute of Health Science

azoicCC5 / 91-96-3

General information

Identification

Identification

SUBSTANCE: azoicCC5 / 91-96-3

UUID: deab6e64-fa59-4831-94d9-2fe3d795e5ab

Dossier UUID: Author:

Date: 2022-12-16T15:32:17.590+09:00

Remarks:

Substance name

azoicCC5 / 91-96-3

Legal entity

National Institute of Health Sciences / Kawasaki / Japan

Identification of substance

Reference substance

N,N'-(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide) / N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide) / 91-96-3 / 202-111-1

EC number EC name
202-111-1 EC Inventory
CAS number CAS name

91-96-3

IUPAC name

N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide)

Role in the supply chain

Manufacturer

false

Importer

false

Only representative

false

Downstream user

false

Toxicological information

Repeated dose toxicity

Repeated dose toxicity: oral

ENDPOINT_STUDY_RECORD: Repeated dose toxicity: oral.001

UUID: d24f470f-836b-4aaf-9786-1ea1dc1c0df4

Dossier UUID: Author:

Date: 2020-10-09T09:59:51.000+09:00

Remarks:

Administrative data

Endpoint

short-term repeated dose toxicity: oral repeated dose 28-day oral toxicity study in rodents

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

A 28-day repeat dose oral toxicity test of azoicCC5 in rat with a recovery period of 2 weeks / Ministry of Health, Labour and Welfare(MHLW), Japan / publication

Data access

data published

Materials and methods -

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents)

Deviations

no

GLP compliance

ves

Test material

Specific details on test material used for the study

azoicCC5 / 91-96-3

Test animals

Species

rat

common rodent species

Strain

other: Crl:CD(SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Laboratories Japan, Inc. Atsugi
- Age at study initiation: 6 weeks
- Weight at study initiation: Males: 201-223 g; Females: 141-168 g
- Housing: bracket-type metallic wire-mesh cages (W 250 × D 350 × H 200 mm)
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: 7 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 20-23 (acceptable range:23±3 °C)
- Humidity (%): 48-62 (acceptable range:50±20 %)
- Air changes: 10-15 times / hr
- Photoperiod: 12 hrs dark / 12 hrs light

Administration / exposure

Route of administration

oral: gavage

Vehicle

methylcellulose

Details on oral exposure

PREPARATION OF DOSING SOLUTIONS: Test substance was suspended in Methyl cellulose 400cP for injection.

Vehicle

- Name: 0.5 w/v% Methyl cellulose 400cP
- Lot Number: 8K74
- Manufacturer: Wako pure Chemical Industries, Ltd.
- Storage Conditions: Refrigeration (refrigerator, measured temperature: 3 to 6°C)

Analytical verification of doses or concentrations

yes

Details on analytical verification of doses or concentrations

Test solutions were prepared at least once in 8 days and used within 7 days of preparation.

The test solutions to be used for week 1 or week 4 of administration were analyzed for concentration by HPLC method at Gotemba Laboratory, Bozo Research Center Inc.

The results showed that the concentrations were 95.5 to 105.0% of the nominal concentrations (acceptable range: $100 \pm 10\%$ of the nominal value), which were all within the acceptable range.

Duration of treatment / exposure

28 days

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
8	mg/kg bw/day (actual dose received)
Dose / conc.	
40	mg/kg bw/day (actual dose received)
Dose / conc.	
200	mg/kg bw/day (actual dose received)
Dose / conc.	
1000	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

6 or 12 animals/sex/dose as a main dose group 6 out of 12 animals at 0 and 1000 mg/kg bw/day were treated as a recovery group

Control animals

yes

yes, concurrent vehicle

0.5 w/v% Methyl cellulose 400cP

Details on study design

- Dose selection rationale: Doses in this test were set based on the results of the following dose s etting study: a 14-day repeated dose oral toxicity test (doses: 0, 300, and 1000 mg/kg bw/day).

The main changes observed were food consumption and organ weight of all males at >= 100 mg/kg bw/day and changes in hematological examination in females in the >=300 mg/kg bw/day group. However, the relationship with azoicCC5 is uncertain.

Therefore, the highest dose in this study was set at 1000 mg/kg bw/day, with a high dose at 200 mg/kg bw/day, a middle dose of 40 mg/kg bw/day group and a low dose of 8 mg/kg bw/day, using the common ratio of approximately 5.

- Rationale for animal assignment: Body weight-balanced randomization
- Post-exposure recovery period in recovery groups: 14 days

Examinations

Observations and examinations performed and frequency

CAGE SIDE OBSERVATIONS:

Yes

Males and females: 3 times/day during the administration period (before and after dosing), once a day during the recovery period.

DETAILED CLINICAL OBSERVATIONS:

Yes

Other examinations

BODY WEIGHT:

Yes

Time schedule for examinations: Males /females (main/recovery group): All animals were weighed before administration on days 1, 4, 7, 10, 14, 17, 21, 24 and 28 of administration and on days 1, 3, 7, 10 and 14 of recovery, and the day of necropsy (after ca. 16h-fasting).

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

yes

Males /females (main/recovery group): on days1, 7, 14, 21, and 28 during the administration period, and on days 7 and 14 during the recovery period.

OPHTHALMOSCOPIC EXAMINATION:

yes

HAEMATOLOGY:

Yes

- Time schedule for collection of blood: Blood was collected on the day of necropsy
- Anaesthetic used for blood collection: Yes (ether)
- Animals fasted: Yes, 16-20h
- How many animals: all animals, 6 sex/dose/group

CLINICAL CHEMISTRY:

Yes

Time schedule for collection of blood: Same as hematology

- Animals fasted: Same as hematology
- How many animals: Same as hematology
- Parameters checked in table were examined.

URINALYSIS:

Yes

- Time schedule for collection of urine: on weeks 4 of the administration period and weeks 2 of the recovery period.
- Metabolism cages used for collection of urine: Yes
- Animals fasted: 4-hour urine under fasting diet ad libitum
 - 20- hour urine under diet and water ad libitum

Statistics

The data were analyzed for homogeneity of variance by the Bartlett test. If variances were homogeneous, data was analyzed by the Dunnett test, whereas heterogeneous data was analyzed by the Steel test (p<0.05 and p<0.1, two-sided).

2 groups: The data were analyzed for homogeneity of variance by the F test. If variances were homogeneous, data was analyzed by the Student t test, whereas heterogeneous data was analyzed by the Aspin-Welch t test (p<0.05 and p<0.1, two-sided).

Results and discussion -

Results of examinations

Clinical signs

no effects observed

Mortality

no mortality observed

Body weight and weight changes

effects observed, treatment-related

Description (incidence and severity)

1) Administration period

At 40 mg/kg bw/day, low body weight was significantly observed in males from day 7 to day 28 of the administration period and in females on days 24 and 28 of the administration period.

At 200 mg/kg bw/day and 1000 mg/kg bw/day in males, low body weights were observed from day 4 to day 28 of the administration period.

At 200 mg/kg bw/day in females, low body weights were observed on day 28 of the administration period.

At 1000 mg/kg bw/day in females, low body weights were observed from day 17 to day 28 of the administration period.

In the 40 mg/kg bw/day and above groups, low body weight gain was significantly observed in males and females.

At 8 mg/kg bw/day, there was a trend toward lower values in males throughout the treatment period.

2) Recovery period

At 1000 mg/kg bw/day, low body weights were significantly observed in males from day 1 to day 14 of recovery period, and in females on day 1 of recovery period.

Food consumption and compound intake (if feeding study)

effects observed, treatment-related

Description (incidence and severity)

Significant low food consumption was observed in males at 40 mg/kg bw/day, females from day 7 to day 28 of the administration period, females at 40 mg/kg bw/day, females on days 21 and 28 of the administration period, females at 200 mg/kg bw/day, females on days 7 and 28 of the administration period, and females at 1000 mg/kg bw/day on days 21 and 28 of the administration period.

At 1000 mg/kg bw/day, lower food consumption was significantly observed in males on day 7 of rec overy period.

Food efficiency

not examined

Water consumption and compound intake (if drinking water study)

not examined

Haematological findings

no effects observed

Description (incidence and severity)

1) End of the administration period

Low fibrinogen levels were significantly observed in males at 40 mg/kg bw/day and above.

A significant reduction in prothrombin time was observed in males at 40 mg/kg bw/day and 200 mg/kg bw/day.

At 200 mg/kg bw/day, high hemoglobin and hematocrit values and low reticulocyte percentage were s ignificantly observed in males.

Significantly lower eosinophil counts for the percentage of leukocytes and eosinophil numbers in I eukocytes fractions were observed in males at 40 mg/kg bw/day and 200 mg/kg bw/day.

These changes were considered to be spontaneous because hematology changes were mild and not observed in high dose groups.

2) End of the recovery period

Significantly lower red blood cell counts and higher reticulocyte percentages were observed in males at 1000 mg/kg bw/day.

At 1000 mg/kg bw/day, higher platelet counts were significantly observed in females.

At 1000 mg/kg bw/day, a low lymphocyte percentage and a high neutrophil percentage were sign ificantly observed in males.

At 1000 mg/kg bw/day, low eosinophil proportions and high neutrophil counts in differential real counts were significantly observed in females.

At 1000 mg/kg bw/day, a significantly higher number of neutrophils was observed in males in the f ractionated real number.

These changes were considered to be spontaneous because hematology changes were not dose dependent.

Clinical biochemistry findings

no effects observed

Description (incidence and severity)

A significant increase in phospholipids was observed in males at 40 mg/kg bw/day and in males and females at 1000 mg/kg bw/day at the end of the administration period.

High levels of phospholipids were observed in males at 200 mg/kg bw/day.

At 1000 mg/kg bw/day, high levels of total cholesterol were observed in males and females.

It was indicated that the effect of the administration of azoicCC5 to the liver was indicated. These changes disappeared after the recovery period.

At the end of the administration period, low ALT was observed in females at 40 mg/kg bw/day, and low ALP was observed in females at 40 mg/kg bw/day, females at 1000 mg/kg, and males at 1000 mg/kg bw/day.

These were considered insignificant because they were all very mild and not high, suggestive of disability.

At the end of the recovery period, high AST and ALT levels were observed in males at 1000 mg/kg bw/day. These changes were considered incidental because they were minimal in severity and were not observed at the end of the administration period.

A high potassium level was observed in males at 1000 mg/kg bw/day. However, it was considered to be spontaneous because there was no change in other electrolytes and it was not observed at the end of the administration period.

Urinalysis findings

effects observed, treatment-related

Description (incidence and severity)

No qualitative abnormalities were observed in either sex in each test article treatment group on week 4 of the administration period.

Small water consumption were significantly observed in males at 40 mg/kg bw/day and higher and in females at 1000 mg/kg bw/day on week 4 of the administration period.

Low urinary volume were significantly observed in males at 1000 mg/kg bw/day on week 4 of the administration period.

These changes were considered to be spontaneous because these were recovered by withdraw.

Behaviour (functional findings)

no effects observed

Description (incidence and severity)

At 1000 mg/kg bw/day, a high landing open leg width was significantly observed in males at week 2 of recovery period.

At 1000 mg/kg bw/day, a significant increase in locomotor activity was observed in females between 0 and 60 minutes of measurement at week 2 of recovery period.

These changes were considered to be spontaneous.

Organ weight findings including organ / body weight ratios

no effects observed

Description (incidence and severity)

At the end of the treatment period, higher relative liver weights were observed in males at 40 mg/kg bw/day and in females at 200 mg/kg bw/day.

At the end of the administration period, low absolute thymus weights were observed in males at 200 mg/kg bw/day.

There were no abnormalities at the end of the recovery period, and recovery was observed.

At the end of the administration or recovery period, low absolute weights were observed in the brain, heart, spleen, kidney, and ovary, and high relative weights were observed in the brain, heart, spleen, testis, and epididymis in the organ weights.

These changes were considered to be secondary to the inhibition of body weight gain.

At the end of treatment, low absolute adrenal weights were observed in females at 1000 mg/kg bw/day and males at each dose level, and low relative adrenal weights were observed in males at 40 mg/kg bw/day.

At the end of the recovery period, low absolute weights were observed in males at 1000 mg/kg bw/da y.

These changes were considered to be incidental because they were minimal in severity and were usu ally observed.

Gross pathological findings

no effects observed

Description (incidence and severity)

At the end of the recovery period, centrilobular hepatocyte hypertrophy was observed in the liver of males at 1000 mg/kg bw/day. However, the degree and frequency of hepatocyte hypertrophy were alleviated and were no longer observed after withdrawal of administration, showing reversibility.

At the end of administration or at the end of the recovery period, there were focal depressed foci and cysts in the kidney, focal white foci in the spleen, small testes, focal elevated foci in the forestomach, and dark red foci in the glandular stomach.

All changes were judged to be spontaneous based on their appearance status, etc.

Effect levels

Key result

true

Dose descriptor

NOAEL

Effect level

8

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

body weight and weight gain food consumption and compound intake histopathology: non-neoplastic centrilobular hypertrophy of hepatocytes organ weights and organ / body weight ratios

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF91 -96 -3b.pdf

Applicant's summary and conclusion

Conclusions

.Based on the effects in the liver observed at 40 mg/kg bw/day, the NOAEL for the repeated-dose toxi city of azoic CC5 in rats was determined to be 8 mg/kg bw/day.

Executive summary

The repeated-dose toxicity of azoic CC5 was evaluated in rats according to the OECD TG 407. Male and female rats (6 or 12 animals/sex/dose) were treated with 0 [vehicle: 0.5% (w/v) methylcellulose solution], 8, 40, 200, and 1000 mg/kg bw/day azoic CC5 for 28 days. Six of the 12 animals/sex receiving 0 and 1,000 mg/kg bw/day were selected for a 14-day recoverygroup.

No treatment-related deaths were observed for either sex. For both sexes, decreased food consumption, body weight, and body weight gain were observed in the groups receiving \geq 40 mg/kg bw/day. Water intake was decreased in males receiving \geq 40 mg/kg bw/day as well as females receiving 1,000 mg/kg bw/day. Urine volume was decreased in males receiving 1,000 mg/kg bw/day. Blood chemistry analysis showed increased total cholesterol and phospholipid levels in both sexes treated with 1000 mg/kg bw/day. The relative weight of the liver was increased in males receiving \geq 40 mg/kg bw/day and females receiving \geq 200 mg/kg bw/day. Histopathological analysis revealed centrilobular hepatocellular hypertrophy in both sexes treated with \geq 40 mg/kg bw/day. Following withdrawal of treatment, the changes observed during or at the end of the administration period were no longer observed, and were thus reversible. Based on the effects in the liver observed at 40 mg/kg bw/day, the NOAEL for the repeated-dose toxicity of azoic CC5 in rats was determined to be 8 mg/kg bw/day.

ENDPOINT_STUDY_RECORD: Repeated dose toxicity: oral.002

UUID: d6ea4fa5-213f-4942-8c18-5e60661852e4

Dossier UUID: Author:

Date: 2020-10-09T10:35:05.000+09:00

Remarks:

Administrative data

Endpoint

repeated dose toxicity: oral, other oral combined repeated dose and reproduction / developmental screening

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Toxicity to reproduction / Toxicity to reproduction.001 / azoicCC5 / 91-96-3 / N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide) / 91-96-

Remarks

Toxicity to reproduction.001

Data source -

Reference

A reproduction/developmental toxicity screening test in rats treated orally with azoicCC5 / Ministry of Health, Labour and Welfare(MHLW), Japan / publication

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

other: Guideline for reproduction/developmental toxicity screening test in rats (Chemical Substances Control Law of Japan)

GLP compliance

yes

Test material -

Specific details on test material used for the study

azoicCC5 / 91-96-3

Test animals —

Species

rat

common rodent species

Strain

other: Crl:CD(SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Laboratories Japan, Inc. Atsugi
- Age at study initiation: 10 weeks
- Weight at study initiation: Males: 371-442 g; Females: 222-264 g
- Housing: bracket-type metallic wire-mesh cages (W 250 × D 380 × H 180 mm)
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: 15 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 20-24 (acceptable range:22±3 °C)
- Humidity (%): 38-70 (acceptable range:50±20 %)
- Air changes: 10-15 times / hr
- Photoperiod: 12 hrs dark / 12 hrs light

Administration / exposure -

Route of administration

oral: gavage

Vehicle

methylcellulose

Details on oral exposure

PREPARATION OF DOSING SOLUTIONS: Test substance was dissolved in methyl cellulos for injection.

Vehicle

- Name: 0.5 w/v% Methyl cellulose 400cP
- Lot Number: WEK5883
- Manufacturer: Wako pure Chemical Industries, Ltd.
- Storage Conditions: Refrigeration (refrigerator, measured temperature: 3.3 to 10°C)

Details on analytical verification of doses or concentrations

Test solutions were prepared at least once in 8 days and used within 7 days of preparation.

The test solutions to be used for day 1 or day 42 of administration were analyzed for concentration by IR method

The results showed that the concentrations were 94.0 to 100.0% of the nominal concentrations (acceptable range: $100 \pm 10\%$ of the nominal value), which were all within the acceptable range.

Duration of treatment / exposure

Males were dosed for 42 days, including a 14-day pre-mating period and subsequent mating period. Females were dosed for 40–49 days, including 14-day pre-mating, mating, and gestation periods, and until lactation day 3.

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
2.5	mg/kg bw/day (actual dose received)
Dose / conc.	
10	mg/kg bw/day (actual dose received)
Dose / conc.	
40	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

12 animals / sex / dose

Control animals

yes, concurrent vehicle

Details on study design

In a 28-day repeated-dose oral toxicity study (dose: 8, 40, 200, 1000 mg/kg/day), decreased body wei ght gain, decreased food consumption, and hepatic centrilobular hepatocellular hypertrophy were observed in both sexes at doses 40 mg per kg/day, and increased liver weights were observed in males (doses 200 mg/kg) and females (doses 200 mg/kg).

Therefore, the highest dose in this study was set at 40 mg/kg bw/day, a middle dose of 10 mg/kg bw/day group and a low dose of 2.5 mg/kg bw/day, using the common ratio of approximately 4.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

Examinations

Observations and examinations performed and frequency

CAGE SIDE OBSERVATIONS: Yes

Males and females: 3 times/day during the administration period (before and after dosing), once a day during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

BODY WEIGHT: Yes

Time schedule for examinations: Males /females (main/recovery group): All animals were weighed before administration on days 1, 3, 7, 14, 21, 28, 35 and 42 of administration.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study): Yes

Time schedule for examinations: Males /females (main/recovery group): All animals were weighed before administration on days 1, 3, 7, 14, 21, 28, 35 and 42 of administration.

OPHTHALMOSCOPIC EXAMINATION: yes

HAEMATOLOGY: No CLINICAL CHEMISTRY: No

URINALYSIS: No

Statistics

The data were analyzed for homogeneity of variance by the Bartlett test. If variances were homogeneous, data was analyzed by the Dunnett test, whereas heterogeneous data was analyzed by the Kruskal-Wallis test (p<0.05). If variances were homogeneous, data was analyzed by the Steel (p<0.1).

Results and discussion

Results of examinations

Clinical signs

effects observed, non-treatment-related

Description (incidence and severity)

In the 10 mg/kg bw/day group, Red urine was observed in one male from Day 29 to Day 43, but it was not a dose-related change.

Mortality

no mortality observed

Body weight and weight changes

effects observed, treatment-related

Description (incidence and severity)

In males, in the 40 mg/kg bw/day group, body weight gain was suppressed during the treatment period, and significant decreases in body weight after Day 2 and significant decreases in body weight gain were observed during the treatment period.

At 2.5 mg/kg bw/day and 10 mg/kg bw/day groups, in males, no effects were observed.

In females in the 40 mg/kg bw/day group, body weight gain was suppressed during gestation, and body weight gain was significantly lower than that in the control group.

In the 10 mg/kg bw/day and 40 mg/kg bw/day groups, significantly lower body weights were observed at 4 days of lactation period.

Body weight gain tended to be lower in the 2.5 mg/kg bw/day group than in the control group, and was significantly lower in the 2.5 mg/kg bw/day group during lactation period.

Body weight and body weight gain during the 14 days before mating were not significantly different between each dose group and the control group.

Food consumption and compound intake (if feeding study)

effects observed, treatment-related

Description (incidence and severity)

In males, in the 40 mg/kg/day group, a tendency toward lower food consumption was observed in the administration period, and lower food consumption was significantly observed after day 7 of administration.

In 2.5 mg/kg bw/day and 10 mg/kg bw/day groups, in males, food consumption was not significantly different compared with the control group.

Females tended to have lower food consumption of gestation and lactation period in the 10 mg/kg bw/day group.

Lower food consumption was significantly observed in the 10 mg per kg/day group on day 14 of gestation and day 4 of lactation period, and in the 40 mg/kg bw/day group on days 7, 14 and 4 of ges tation.

There were no statistically significant differences in the 2.5 mg/kg bw/day group compared with the c ontrol group, but there was a tendency toward lower food consumption on the day 4 of lactation perio d.

During the 14 days before mating, food consumption was not significantly different between each dose group and the control group.

Organ weight findings including organ / body weight ratios

effects observed, treatment-related

Description (incidence and severity)

Higher relative liver weights were observed in males at 10 mg/kg bw/day and at 40 mg/kg bw/day. At 40 mg/kg bw/day, in males, testicular relative higher weight and, lower absolute seminal vesicle weight were observed.

No effect was observed at 2.5 mg/kg bw/day in males.

Higher relative liver weights were observed in females at 40 mg/kg bw/day.

No effect was observed at 2.5 mg/kg bw/day and 10 mg/kg bw/day in males.

Gross pathological findings

effects observed, treatment-related

Description (incidence and severity)

In the 10 and 40 mg/kg bw/day groups, unilateral renal pelvis dilatation was observed in two males a nd one male, respectively.

In the 2.5 mg/kg bw/day group, no effects were observed in any of the animals.

In the control group, a unilateral caudal yellowish white mass was observed in the epididymis in one animal.

Histopathological findings: non-neoplastic

effects observed, treatment-related

Description (incidence and severity)

In males, slight centrilobular hepatocellular hypertrophy was observed in the liver in 11 of 12 animals in the 40 mg/kg bw/day group.

Minimal granulomas in the liver and minimal and mild inflammation in the prostate were spontane ously observed in a few rats in each group, but the spontaneous changes are often observed in rats a nd were not considered to be dose-related effect.

Minor dilatation of the renal pelvis was observed in 2 animals (males) in the 10 mg/kg bw/day group and 1 animal (male) in the 40 mg/kg bw/day group, both of which were unilateral changes and these changes were considered to be spontaneous.

There was mild sperm granuloma in the epididymis in one male and minimal seminiferous tubule atro phy in the testis and minimal cellular debris in the lumen of the epididymis in the other male in the control group.

Minimal granulomas in the liver were observed in 1 female each in the control group and the 40 mg/ kg bw/day group, but considered to be spontaneous changes.

No abnormal findings were observed in an infertile female in the 2.5 mg/kg bw/day group.

Target system / organ toxicity -

Key result

false

Lowest effective dose / conc.

10

mg/kg bw/day (actual dose received)

System

cardiovascular

Organ

liver

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF91-96-3c.pdf

Applicant's summary and conclusion

Executive summary

The reproductive and developmental toxicity of azoic CC5 was evaluated in a reproduction/ developmental toxicity screening test in rats (OECD TG 421). In this study, azoic CC5 was administered via oral gavage at doses of 0 [vehicle: 0.5% (w/v) methylcellulose solution], 2.5, 10, and 40 mg/kg bw/ day. Males (12/dose) were treated for 42 days, including a 14-day premating period and subsequent mating period, while females (12/dose) were treated for 40-49 days, including 14-day premating, mating, and gestation periods, until lactation day 3. No deaths were observed due to treatment in either sex. Decreased food consumption, body weight, and body weight gain were observed in males treated with 40 mg/kg bw/day and females treated with≥10 mg/kg bw/day. At doses of≥2.5 mg/kg bw/day, body weight gain and body weight decreased in females during the lactation period. An increased relative liver weight was observed in males treated with≥10 mg/kg bw/day and females treated with 40 mg/kg bw/day, and centrilobular hepatocellular hypertrophy was observed in males treated with 40 mg/kg bw/day.

	19	

Genetic toxicity

Genetic toxicity in vitro

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.001

UUID: 863194e1-9eee-4ae3-a921-064fe82084ac

Dossier UUID: Author:

Date: 2020-10-09T12:26:45.000+09:00

Remarks:

Administrative data -

Endpoint

in vitro gene mutation study in bacteria

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

A reverse mutation test of azoicCC5 using bacteria / Ministry of Health, Labour and Welfare(MHLW), Japan / publication

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 471 (Bacterial Reverse Mutation Assay) in vitro gene mutation study in bacteria

Deviations

no

Principles of method if other than guideline

"Study Methods on New Chemical Substances, etc." (Chemical Substances Control Law of Japan)

GLP compliance

yes

Type of assay

bacterial reverse mutation assay in vitro gene mutation study in bacteria

Test material

Specific details on test material used for the study

azoicCC5 / 91-96-3

Method

Species / strain

Species / strain / cell type

S. typhimurium TA 1535, TA 1537, TA 98 and TA 100 bacteria

Species / strain / cell type

E. coli WP2 uvr A bacteria

Metabolic activation

with and without

Metabolic activation system

S9 mix, SD male rat liver, induced by phenobarbital (PB) and 5,6-benzoflavone (BF)

Test concentrations with justification for top dose

To set the dose levels for the main tests, the 50 mg/mL solution was diluted 4 times using a common ratio of 4 and a total of 7 dose levels were selected (1.22, 4.88, 19.5, 78.1, 313, 1250 and 5000 μ g/plate) in the dose-selection test.

In the dose-selection test, growth inhibition by the test substance was observed at 313 μ g/plate and above for S. typhimurium TA strains without metabolic activation, at 313 μ g/plate and above for S. typhimurium TA1537 with metabolic activation, and at 1250 μ g/plate and above for S. typhimurium TA100, TA1535, TA98 with metabolic activation. Neither precipitation of nor coloration by the test substance on the plate was observed at any dose level irrespective of the presence or absence of m etabolic activation.

Therefore, in the main tests, the lowest dose levels at which cell growth inhibition was observed in the dose-selection test were set as the highest dose levels 313 μ g/plate for S. typhimurium TA strains without metabolic activation, 1250 μ g/plate for S. typhimurium TA1535 with metabolic activation, and a total of 6 dose levels were selected by 5-step dilution using a common ratio of 2.

Test were set as the highest dose levels 5000 μ g/plate for E.coli WP2 uvrA with or without metabolic activation, and a total of 5 dose levels were selected by 4-step dilution using a common ratio of 2. Test were set as the highest dose levels 5000 μ g/plate for S. typhimurium TA100, TA98 and a total of 8 dose levels were selected by 7-step dilution using a common ratio of 2.

Vehicle / solvent

DMSO

Controls

Untreated negative controls

no

Negative solvent / vehicle controls

yes

True negative controls

no

Positive controls

yes

Positive control substance

sodium azide benzo(a)pyrene

other: 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2) 2-Methoxy-6-chloro-9-[3-(2-chloroethyl)-a minopropylamino]acridine.2HCl (ICR-191) 2-Aminoanthracene (2AA)

Details on test system and experimental conditions

METHOD OF APPLICATION: Preincubation

DURATION

- Preincubation period: 20 min

Exposure duration: ca. 50 hours NUMBER OF REPLICATIONS: 3

Results and discussion

Test results

Key result

false

Species / strain

S. typhimurium TA 100 bacteria

Metabolic activation

with

Genotoxicity

positive

Cytotoxicity / choice of top concentrations

cytotoxicity growth inhibition: 1250 µg/plate

Vehicle controls validity

valid

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 98 bacteria

Metabolic activation

with

Genotoxicity

positive

Cytotoxicity / choice of top concentrations

cytotoxicity growth inhibition: 1250 μg/plate

Vehicle controls validity

valid

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 1535 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

cytotoxicity growth inhibition: $625 \,\mu g/plate$ with metabolic activation growth inhibition: $313 \,\mu g/plate$ without metabolic activation

Vehicle controls validity

valid

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 1537 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

cytotoxicity growth inhibition: 156 μ g/plate without metabolic activation growth inhibition: 313 μ g/plate with metabolic activation

Vehicle controls validity

valid

Positive controls validity

valid

Key result

false

Species / strain

E. coli WP2 uvr A bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Positive controls validity

valid

Any other information on results incl. tables

Tables in English are attached.

Applicant's summary and conclusion

Conclusions

In a bacterial reverse mutation assay using S. typhimuriumTA100, TA1537, TA1537, TA98 and E.coli, azoicCC5 was positive with metabolic activation for TA100 and TA98.

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.002

UUID: 156c0482-e51e-4368-88bd-c4746faac9d6

Dossier UUID: Author:

Date: 2019-05-23T13:40:44.000+09:00

Remarks:

Administrative data -

Endpoint

in vitro cytogenicity / chromosome aberration study in mammalian cells

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

Chromosome aberration test in cultured chinese hamster cells treated with azoicCC5 / Ministry of Health, Labour and Welfare(MHLW), Japan / publication

Data access

data published

Materials and methods -

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 473 (In Vitro Mammalian Chromosomal Aberration Test)

in vitro cytogenicity / chromosomal aberration study in mammalian cells (from 26 September 2014)

Deviations

nο

GLP compliance

yes

Type of assay

in vitro mammalian chromosome aberration test in vitro cytogenicity / chromosome aberration study in mammalian cells

Test material -

Specific details on test material used for the study

azoicCC5 / 91-96-3

Method

Species / strain

Species / strain / cell type

Chinese hamster lung (CHL/IU)

mammalian cell line

Metabolic activation

with and without

Metabolic activation system

S9 mix, SD male rat liver, induced by phenobarbital (PB) and 5,6-benzoflavone (BF)

Test concentrations with justification for top dose

- +S9 mix(short-term treatment): 0, 30.1, 60.2, 120, 241, 481, 963, 1930, 3850 μg/mL
- -S9 mix(short-term treatment): 0, 30.1, 60.2, 120, 241, 481, 963, 1930, 3850 μ g/mL
- -S9 mix(24hr-continuous treatment): 0, 30.1, 60.2, 120, 241, 481, 963, 1930, 3850 μg/mL
- -S9 mix(48hr-continuous treatment): 0, 30.1, 60.2, 120, 241, 481, 963, 1930, 3850 μg/mL

Cell-growth inhibition test was conducted up to the limited concentration of 3850 µg/mL (10 mM)

- -Short term treatment, +S9 mix: concentration of 50% cell-growth inhibition was determined as 200.7 $\mu g/mL$
- -Short term treatment, -S9 mix: concentration of 50% cell-growth inhibition was determined as above 3850.0 μg/mL
- -Continous treatment (24 h): concentration of 50% cell-groth inhibition was determined as above 481. 0 μ g/mL
- -Continous treatment (48 h): concentration of 50% cell-groth inhibition was determined as 963.0 μ g/mL

Vehicle / solvent

injection solvent

Controls

Positive controls

yes

Positive control substance

cyclophosphamide

mitomycin C

Details on test system and experimental conditions

Exposure duration: [continuous treatment]: 24, 48 hrs [short-term treatment]: 6 hrs + 18 hr

SPINDLE INHIBITOR: Colcemid NUMBER OF REPLICATIONS: 2

NUMBER OF CELLS EVALUATED: 200 cells / dose

DETERMINATION OF CYTOTOXICITY

- Method: relative total growth

Evaluation criteria

For the evaluation of the frequencies of structural aberrations and of polyploidy induced, the following criteria were employed.

Appearance incidence of cells with chromosomal aberrations: Negative (-): < 5%; equivocal (\pm): 5 - 10%; positive (+): > 10%.

Finally, the substance is positive when the incidence is considered to be dose-related and reprod ucible.

Statistics

not use

Results and discussion

Test results

Key result

false

Species / strain

Chinese hamster lung (CHL/IU) mammalian cell line

Metabolic activation

with and without

Genotoxicity

negative structural aberration

Cytotoxicity / choice of top concentrations

cytotoxicity >50% cell growth inhibitation: 200.7 ug/mL with S9 (short), Cytotoxicity: no with S9(24h continuous, 48h continuous), Cytotoxicity: no without S9

Vehicle controls validity

valid

Positive controls validity

valid

Key result

false

Species / strain

Chinese hamster lung (CHL/IU) mammalian cell line

Metabolic activation

without

Genotoxicity

positive chromosome numerical aberrations. Metabolic activation: with negative, chromosome numerical aberrations

Cytotoxicity / choice of top concentrations

cytotoxicity >50% cell growth inhibitation: 200.7 ug/mL with S9 (short), Cytotoxicity: no with S9(24h continuous, 48h continuous), Cytotoxicity: no without S9

Vehicle controls validity

valic

Positive controls validity

valid

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF91-96-3f.pdf

Applicant's summary and conclusion

Executive summary

It was concluded that azoicCC5 is positive without metabolic actination for chromosome numerical aberration under the conditions of this study.

Toxicity to reproduction

Toxicity to reproduction

ENDPOINT_STUDY_RECORD: Toxicity to reproduction.001

UUID: 214c87ea-ba7e-4027-8326-b826854455d6

Dossier UUID: Author:

Date: 2022-12-16T15:32:17.590+09:00

Remarks:

Administrative data

Endpoint

screening for reproductive / developmental toxicity

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Repeated dose toxicity: oral / Repeated dose toxicity: oral.002 / azoicCC5 / 91-96-3 / N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide) / 91-96-

Remarks

Repeated dose toxicity: oral.002

Data source

Reference

A reproduction/developmental toxicity screening test in rats treated orally with azoicCC5 / Ministry of Health, Labour and Welfare(MHLW), Japan / publication

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

other: Guideline for reproduction/developmental toxicity screening test in rats (Chemical Substances Control Law of Japan)

GLP compliance

yes

Test material -

Specific details on test material used for the study

azoicCC5 / 91-96-3

Test animals -

Species

rat

Strain

other: Crl:CD(SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Laboratories Japan, Inc. Atsugi
- Age at study initiation: 10 weeks
- Weight at study initiation: Males: 371-442 g; Females: 222-264 g
- Housing: bracket-type metallic wire-mesh cages (W 250 × D 380 × H 180 mm)
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: 15 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 20-24 (acceptable range:22±3 °C)
- Humidity (%): 38-70 (acceptable range:50±20 %)
- Air changes: 10-15 times / hr
- Photoperiod: 12 hrs dark / 12 hrs light

Administration / exposure

Route of administration

oral: gavage

Vehicle

other: 0.5 w/v% Methyl cellulose

Details on mating procedure

- M/F ratio per cage: 1/1
- Length of cohabitation: up to 2 weeks
- Proof of pregnancy: vaginal plug / sperm in vaginal smear referred to as day 0 of pregnancy

Analytical verification of doses or concentrations

yes

Duration of treatment / exposure

Males were dosed for 42 days, including a 14-day pre-mating period and subsequent mating period. Females were dosed for 40-49 days, including 14-day pre-mating, mating, and gestation periods, and until lactation day 3.

Frequency of treatment

Once/day, 7 days/wee

Doses / concentrations

Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
2.5	mg/kg bw/day (actual dose received)
Dose / conc.	
10	mg/kg bw/day (actual dose received)
Dose / conc.	
40	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

12 animals / sex / dose

Control animals

yes, concurrent vehicle

Details on study design

In a 28-day repeated-dose oral toxicity study (dose: 8, 40, 200, 1000 mg/kg/day), decreased body wei ght gain, decreased food consumption, and hepatic centrilobular hepatocellular hypertrophy were observed in both sexes at doses 40 mg per kg/day, and increased liver weights were observed in males (doses 200 mg/kg) and females (doses 200 mg/kg).

Therefore, the highest dose in this study was set at 40 mg/kg bw/day, a middle dose of 10 mg/kg bw/day group and a low dose of 2.5 mg/kg bw/day, using the common ratio of approximately 4.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

Examinations

Parental animals: Observations and examinations

CAGE SIDE OBSERVATIONS: Yes

Males and females: 3 times/day during the administration period (before and after dosing), once a day during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

BODY WEIGHT: Yes

Time schedule for examinations: Males /females (main/recovery group): All animals were weighed b efore administration on days 1, 3, 7, 14, 21, 28, 35 and 42 of administration.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):Yes

Time schedule for examinations: Males /females (main/recovery group): All animals were weighed before administration on days 1, 3, 7, 14, 21, 28, 35 and 42 of administration.

OPHTHALMOSCOPIC EXAMINATION: yes

HAEMATOLOGY: No

CLINICAL CHEMISTRY: No

URINALYSIS: No

Oestrous cyclicity (parental animals)

ves

Sperm parameters (parental animals)

no examin

Postmortem examinations (parental animals)

yes

Postmortem examinations (offspring)

yes

Statistics

The data were analyzed for homogeneity of variance by the Bartlett test. If variances were homogeneous, data was analyzed by the Dunnett test, whereas heterogeneous data was analyzed by the Kruskal-Wallis test (p<0.05). If variances were homogeneous, data was analyzed by the Steel (p<0.1).

Reproductive indices

Fertility index (%) = (No. of pregnant females/No. of copulated females) \times 100 Implantation index (%) = (No. of implantation sites/No. of corpora lutea) \times 100 Birth index (%) = (Number of live pups on day 0 after birth/ No. of implantation sites) \times 100 Sex ratio = No. of liveborn male pups/(No. of liveborn male pups) External abnormalities (%) = (No. of pups with external abnormalities/No. of liveborn pups) \times 100

Offspring viability indices

Viability index = (Number of live pups on day 0 after birth/Number of live pups born) ×100
Viability index = (Number of live pups on day 4 after birth/ Number of live pups on day 0 after birth) ×100

Results and discussion

General toxicity (P0)

Clinical signs

no effects observed

Description (incidence and severity)

In the 10 mg/kg bw/day group, red urine was observed in one male from Day 29 to Day 43, but it was n ot a dose-related change.

No effects were observed in females before mating, in pregnancy period, to day 4 of lactation.

Mortality

no mortality observed

Body weight and weight changes

effects observed, treatment-related

Description (incidence and severity)

In males, in the 40 mg/kg bw/day group, body weight gain was suppressed during the treatment period, and significant decreases in body weight after Day 2 and significant decreases in body weight gain were observed during the treatment period.

At 2.5 mg/kg bw/day and 10 mg/kg bw/day groups, in males, no effects were observed.

In females in the 40 mg/kg bw/day group, body weight gain was suppressed during gestation, and body weight gain was significantly lower than that in the control group.

In the 10 mg/kg bw/day and 40 mg/kg bw/day groups, significantly lower body weights were observed at 4 days of lactation period.

Body weight gain tended to be lower in the 2.5 mg/kg bw/day group than in the control group, and was significantly lower in the 2.5 mg/kg bw/day group during lactation period.

Body weight and body weight gain during the 14 days before mating were not significantly different between each dose group and the control group.

Food consumption and compound intake (if feeding study)

effects observed, treatment-related

Description (incidence and severity)

In males, in the 40 mg/kg/day group, a tendency toward lower food consumption was observed on the administration period, and lower food consumption was significantly observed after day 7 of administration.

In 2.5 mg/kg bw/day and 10 mg/kg bw/day groups, in males, food consumption was not significantly different compared with the control group.

Females tended to have lower food consumption of gestation and lactation period in the 10 mg/kg bw/day group.

Lower food consumption was significantly observed in the 10 mg per kg/day group on day 14 of gestation and day 4 of lactation period, and in the 40 mg/kg bw/day group on days 7, 14 and 4 of ges tation.

There were no statistically significant differences in the 2.5 mg/kg bw/day group compared with the c ontrol group, but there was a tendency toward lower food consumption on the day 4 of lactation perio d.

During the 14 days before mating, food consumption was not significantly different between each dose group and the control group.

Food efficiency

not examined

Organ weight findings including organ / body weight ratios

effects observed, treatment-related

Description (incidence and severity)

Higher relative liver weights were observed in males at 10 mg/kg bw/day and at 40 mg/kg bw/day. At 40 mg/kg bw/day, in males, testicular relative higher weight and, lower absolute seminal vesicle weight were observed.

No effect was observed at 2.5 mg/kg bw/day in males.

Higher relative liver weights were observed in females at 40 mg/kg bw/day.

No effect was observed at 2.5 mg/kg bw/day and 10 mg/kg bw/day in males.

Gross pathological findings

no effects observed

Description (incidence and severity)

In the 10 and 40 mg/kg bw/day groups, unilateral renal pelvis dilatation was observed in two males a nd one male, respectively.

In the 2.5 mg/kg bw/day group, no effects were observed in any of the animals.

In the control group, a unilateral caudal yellowish white mass was observed in the epididymis in one animal.

Histopathological findings: non-neoplastic

no effects observed

Description (incidence and severity)

In males, slight centrilobular hepatocellular hypertrophy was observed in the liver in 11 of 12 animals in the 40 mg/kg bw/day group.

Minimal granulomas in the liver and minimal and mild inflammation in the prostate were spontane ously observed in a few rats in each group, but the spontaneous changes are often observed in rats a nd were not considered to be dose-related effect.

Minor dilatation of the renal pelvis was observed in 2 animals (males) in the 10 mg/kg bw/day group and 1 animal (male) in the 40 mg/kg bw/day group, both of which were unilateral changes and these changes were considered to be spontaneous.

There was mild sperm granuloma in the epididymis in one male and minimal seminiferous tubule atro phy in the testis and minimal cellular debris in the lumen of the epididymis in the other male in the control group.

Minimal granulomas in the liver were observed in 1 female each in the control group and the 40 mg/kg bw/day group, but considered to be spontaneous changes.

Reproductive function / performance (P0) -

Reproductive function: oestrous cycle

no effects observed

Reproductive performance

no effects observed

Effect levels (P0) -

Key result

false

Dose descriptor

LOAEL

Effect level

2.5

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

female

Basis for effect level

body weight and weight gain

weight gain the during lactation period

Results: F1 generation —

General toxicity (F1) —

Clinical signs

no effects observed

Mortality / viability

mortality observed, non-treatment-related

Description (incidence and severity)

Deaths occurred by 4 days of small number of nursing in the control, 2.5 mg/kg bw/day, and 10 mg/kg bw/day groups.

However, there was no significant difference in survival at postnatal days 0 and 4 between each dose group and the control group.

In addition, no abnormalities were observed in the general condition of the live pups in all groups of animals.

Body weight and weight changes

effects observed, treatment-related

Description (incidence and severity)

Body weight tended to be lower on days 0 and 4 of lactation in both sex in the 40 mg/kg bw/day group

Low body weights were significantly observed in males at postnatal day 4.

Organ weight findings including organ / body weight ratios

no effects observed

Gross pathological findings

no effects observed

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF91-96-3c.pdf

Applicant's summary and conclusion

Conclusions

A NOAEL could not be identified, as decreases were observed in body weight gain or body weight in fe males during the lactation period at all doses. The LOAEL of the reproductive/developmental toxicity was determined to be 2.5 mg/kg bw/day

Executive summary

The reproductive and developmental toxicity of azoic CC5 was evaluated in a reproduction/ developmental toxicity screening test in rats (OECD TG 421). In this study, azoic CC5 was administered via oral gavage at doses of 0 [vehicle: 0.5% (w/v) methylcellulose solution], 2.5, 10, and 40 mg/kg bw/day. Males (12/dose) were treated for 42 days, including a 14-day premating period and subsequent mating period, while females (12/dose) were treated for 40–49 days, including 14-day premating, mating, and gestation periods, until lactation day 3.

No deaths were observed due to treatment in either sex. Decreased food consumption, body weight, and body weight gain were observed in males treated with 40 mg/kg bw/day and females treated with ≥ 10 mg/kg bw/day. At doses of ≥ 2.5 mg/kg bw/day, body weight gain and body weight decreased in females during the lactation period. An increased relative liver weight was observed in males treated with ≥ 10 mg/kg bw/day and females treated with 40 mg/kg bw/day, and centrilobular hepatocellular hypertrophy was observed in males treated with 40 mg/kg bw/day. No changes were observed in reproductive organs, and fertility was not also affected by azoic CC5 treatment up to 40 mg/kg bw/day. Decreased body weight was observed in male and female pups at 40 mg/kg bw/day. A NOAEL could not be identified, as decreases were observed in body weight gain or body weight in females during the lactation period at all doses. The LOAEL of the reproductive/developmental toxicity was determined to be 2.5 mg/kg bw/day.

References

Reference Substances

REFERENCE_SUBSTANCE: N,N'-(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide)

UUID: ECB5-56083fb4-e319-4a67-8709-6d9e90c5a45b

Dossier UUID: Author:

Date: 2007-05-10T18:00:00.000+09:00

Remarks:

Reference substance name

N,N'-(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide)

IUPAC name

N,N'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-oxobutanamide)

Inventory

Inventory number

Inventory name

N,N'-(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide)

Inventory

EC Inventory

Inventory number

202-111-1

CAS number

91-96-3

Molecular formula

C22H24N2O4

Description

CAS number

91-96-3

Synonyms

Synonyms

Identity

4',4"'-Bi-o-acetoacetotoluidide

Identity

Butanamide, N,N'-(3,3'-dimethyl[1,1'- biphenyl]-4,4'-diyl)bis[3-oxo-

Identity

Butanamide, N,N'-(3,3'-dimethyl[1,1'-biphenyl]-4,4'-diyl)bis[3-oxo-

Molecular and structural information -

Molecular formula

C22H24N2O4

Molecular weight

380.437

SMILES notation

CC(=0)CC(=0)Nc1ccc(cc1C)c2ccc(NC(=0)CC(=0)C)c(C)c2

InChl

InChI=1/C22H24N2O4/c1-13-9-17(5-7-19(13)23-21(27)11-15(3)25)18-6-8-20(14(2)10-18)24-22(28) 12-16(4)26/h5-10H,11-12H2,1-4H3,(H,23,27)(H,24,28)

Structural formula

Related substances -

Group / category information

DSL Category: Organics USEPA Category: Neutral Organics

Literatures

LITERATURE: A 28-day repeat dose oral toxicity test of azoicCC5 in rat with a recovery period of 2 weeks

UUID: 69996741-ab00-4a90-b22f-d8c0c4d5c218

Dossier UUID: Author:

Date: 2019-05-21T16:34:03.000+09:00

Remarks:

General information

Reference Type

publication

Title

A 28-day repeat dose oral toxicity test of azoicCC5 in rat with a recovery period of 2 weeks

Author

Ministry of Health, Labour and Welfare(MHLW), Japan

Year

LITERATURE: A reproduction/developmental toxicity screening test in rats treated orally with azoicCC5

UUID: f1b78e01-f648-4224-b9e5-ee5c90c0a92e

Dossier UUID: Author:

Date: 2019-05-21T16:43:24.000+09:00

Remarks:

General information

Reference Type

publication

Title

A reproduction/developmental toxicity screening test in rats treated orally with azoicCC5

Author

Ministry of Health, Labour and Welfare(MHLW), Japan

Year

LITERATURE: A reverse mutation test of azoicCC5 using bacteria

UUID: b6f59530-ae88-4db6-a15e-67063d6f6c98

Dossier UUID: Author:

Date: 2019-05-21T16:44:20.000+09:00

Remarks:

General information

Reference Type

publication

Title

A reverse mutation test of azoicCC5 using bacteria

Author

Ministry of Health, Labour and Welfare(MHLW), Japan

Year

LITERATURE: Chromosome aberration test in cultured chinese hamster cells treated with azoicCC5

UUID: 11588660-92af-46a6-a923-3549cfbe90b0

Dossier UUID: Author:

Date: 2019-05-22T11:15:52.000+09:00

Remarks:

General information

Reference Type

publication

Title

Chromosome aberration test in cultured chinese hamster cells treated with azoicCC5

Author

Ministry of Health, Labour and Welfare(MHLW), Japan

Year

Legal Entities

LEGAL_ENTITY: National Institute of Health Sciences

UUID: IUC4-b036ff75-0f3c-323b-b200-ed5f46cf5101

Dossier UUID: Author:

Date: 2022-11-07T15:49:29.000+09:00

Remarks:

General information -

Legal entity name

National Institute of Health Sciences

Remarks

Disclaimer: The contents in this document were created based on the MHLW (Ministry of Health, Labour and Welfare) peer reviewed study reports (in Japanese) in JECDB (Japan Existing Chemical Database) at http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp. Authorship is in the Division of Risk Assessment, the National Institute of Health Sciences, and the contents do not reflect any official MHLW opinions or any other regulatory policies.

Address -

Address 1

Tonomachi 3-25-26

Address 2

Kawasaki-ku

Postal code

210-9501

Town

Kawasaki

Region / State

Kanagawa

Country

Japan

JP

Identifiers -

Other IT system identifiers

IT system

LEO

ID

10767

IT system

IUCLID4

ID

16558402024DIV750