

Name: OECD_SIDS / SUBSTANCE : 2-Decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6 Fri, 29 Nov 2024, 09:50:48+0900 /

Printing date: 2024-11-29T09:50:48.800+09:00

Table of Contents

0/0	1
National Institute of Health Sciences	2
2-Decyltetradecanol	3
1 General information	3
1.1 Identification	3
2-Decyltetradecanol	3
7 Toxicological information	4
7.5 Repeated dose toxicity	4
7.5.1 Repeated dose toxicity: oral	4
Repeated dose toxicity: oral. 001	4
7.6 Genetic toxicity	
7.6.1 Genetic toxicity in vitro	. 13
Genetic toxicity in vitro.001	. 13
Genetic toxicity in vitro.002	. 19
7.8 Toxicity to reproduction	23
7.8.1 Toxicity to reproduction	. 23
Toxicity to reproduction. 001	. 23
References	. 33
Reference Substances	33
2-decyltetradecanol	33
Test Materials	35
2-Decyltetradecanol	35
Literatures	36
Combined repeat dose and reproductive/developmental toxicity screening	
test of 2-decyltetradecanol oral administration in rats	. 36
In Vitro Chromosomal Aberration Test of 2-Decyltetradecanol on Cultured	
Chinese Hamster Cells.	37
Reverse Mutation Test of 2-Decyltetradecanol on Bacteria	38

DOSSIER:

UUID: 0

Dossier UUID:

Author:

Date: 2024-11-29T09:50:48.580+09:00

Remarks:

Dossier header -

Dossier submission type

Name

OECD SIDS

Version

core 9.0

Name (given by user)

Dossier subject -

Dossier subject

2-Decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6

Public name

Submitting legal entity

National Institute of Health Sciences

Dossier creation date/time

Fri, 29 Nov 2024, 09:50:48+0900

Used in category

LEGAL_ENTITY: National Institute of Health Sciences

UUID: 71368d76-19ad-4a2e-bc26-6c8ef515e6e3

Dossier UUID: Author:

Date: 2024-05-29T16:58:20.759+09:00

Remarks:

General information -

Legal entity name

National Institute of Health Sciences

2-Decyltetradecanol

General information

Identification

SUBSTANCE: 2-Decyltetradecanol

UUID: bf62d2a6-6ee6-48ef-9dcf-31264ba2fbf9

Dossier UUID: Author:

Date: 2023-01-13T10:45:47.000+09:00

Remarks:

Substance name

2-Decyltetradecanol

Identification of substance

Reference substance

2-decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6 / 261-385-0

EC number EC name
261-385-0 EC Inventory
CAS number CAS name

58670-89-6 **IUPAC name**

2-decyltetradecan-1-ol

Role in the supply chain

Manufacturer

false

Importer

false

Only representative

false

Downstream user

false

Toxicological information

Repeated dose toxicity

Repeated dose toxicity: oral

ENDPOINT_STUDY_RECORD: Repeated dose toxicity: oral. 001

UUID: edff7289-2be1-496f-824c-f0ccc2470453

Dossier UUID: Author:

Date: 2023-01-13T10:41:07.000+09:00

Remarks:

Administrative data

Endpoint

short-term repeated dose toxicity: oral

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Toxicity to reproduction / Toxicity to reproduction. 001 / 2-Decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6

Data source -

Reference

Combined repeat dose and reproductive/developmental toxicity screening test of 2-decyltetradecanol o / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6d.pdf

Materials and methods -

Test guideline

Qualifier

according to guideline

Guideline

other: Guideline for Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test in Mammalian Species (Chemical Substances Control Law of Japan)

Version / remarks

similar to OECD TG422

GLP compliance

yes

Limit test

no

Test material -

Test material information

2-Decyltetradecanol

Specific details on test material used for the study

- -Name of test material (as cited in study report): 2-Decyltetradecanol
- Analytical purity: 98.4%
- Storage condition of test material: Seald and refrigerated (actual temperature: 3-8°C)
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Test animals -

Species

rat

common rodent species

Strain

other: Crl: CD (SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation: Male: 342.9-448.9 g, Female: 206.9-281.0 g
- Housing: Animals were individually housed in bracket-type metallic wire-mesh cages (220W \times 270D \times 190H mm), from gestation day 18 to lactation day 4, Dams were bred individually or with individual littermates in plastic cages (350W x 400D x 180H mm) and bedding.
- Diet: Solid feed (CE-2: CLEA Japan Inc.) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation period: 15 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 21.0-25.0 (actual temperature: 22.0-25.5°C)
- Humidity (%): 40.0-75.0% (actual humidity: 46.0-66.0%)
- Air changes (per hr): 15
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 7:00-19:00)

Administration / exposure

Route of administration

oral: gavage

Vehicle

corn oil

Details on oral exposure

- Amount of vehicle (if gavage): 4 mL/kg
- Dosing volume: 4 mL/kg

Analytical verification of doses or concentrations

yes

Details on analytical verification of doses or concentrations

The concentrations of each test suspension used at day1 of administration were analyzed by HPLC. The results showed that the concentration of each test suspension was 98.9 to 101.3% of the nominal concentration.

Duration of treatment / exposure

Males: 42 days including 14 days pre-mating

Females (mating group): 41-55 days including 14 days pre-mating, mating and gestation periods and the days until day 4 of lactation

Female (non-mating, satellite group): 42 days

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
62.5	mg/kg bw/day (actual dose received)
Dose / conc.	
250	mg/kg bw/day (actual dose received)
Dose / conc.	
1000	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

Mating group: 12 animals/sex /dose (0, 62.5, 250, and 1000 mg/kg bw/day).

Non-mating group (Satellite group): 10 females/dose (0 and 1000 mg/kg bw/day).

Recovery group: 5 males/dose in the mating group (0 and 1000 mg/kg bw/day) and 5 females/dose in the non-mating groups (0 and 1000 mg/kg bw/day)

Control animals

yes, concurrent vehicle

Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the high dose was set to 1000 mg/kg bw/day, which is the upper limit in test guideline (Chemical Substances Control Law of Japan) and the6 intermediate dose and low dose were set to 250 mg/kg bw/day and 62.5 mg/kg bw/day, respectively.

[14-day preliminary study]

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0, 100, 300 or 1,000 mg/kg bw/day. No treatment-related effects on clinical signs, body weight, haematology, blood chemistry, or pathology were observed up to the highest dose of 1000 mg/kg bw/day in both sexes.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

Examinations

Observations and examinations performed and frequency

CAGE SIDE OBSERVATIONS: Yes

- Time schedule: 2 times/day (before administration, after administration) during the administration p eriod. Once a day during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule:

Males: At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration and Days 7 and 14 of recovery period.

Females in the mating groups: At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration period, once during lactation period (lactation day 0 from day 4) for delivered females and Day 49 for not delivered females until Day 49.

Females in the non-mating groups (satellite group): At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration and Days 7 and 14 of recovery period.

BODY WEIGHT: Yes

- Time schedule for examinations:

Males: Days 1, 4, 7, 14, 21, 28, 35, and 42 of administration period and on the day of necropsy, and Days 1, 7 and 14 of recovery period and on the day of necropsy.

Females in the mating groups: Days 1, 4, 7, and 14 of administration period, Days 0, 7, 14, and 20 of gestation, Days 0, 4 of lactation, and on the day of necropsy.

Females in the non-mating groups (satellite group): Days 1, 4, 7, 14, 21, 28, 35, and 42 of administratio n period and on the day of necropsy, and Days 1, 7 and 14 of recovery period and on the day of necropsy.

Food consumption: Yes

Measurement of food consumption was conducted on all animals at the following frequencies: Males: Days 1-2, 7-8, 14-15, 29-30, 35-36 and 41-42 of administration period. Days 6-7 and 12-13 of r ecovery period.

Females in the mating groups: Days 1-2, 7-8 and 14-15 of administration period. Days 0-1, 7-8, 14-15, and 20-21 of gestation period. Days 3-4 of lactation period. Days 29-30, 35-36, 41-42 and 48-49 of administration period for unmated females.

Females in the non-mating groups (satellite group): Days 1-2, 7-8, 14-15, 21-22, 29-30, 35-36 and 41-42 of administration period. Days 6-7 and 12-13 of recovery period.

OPHTHALMOSCOPIC EXAMINATION: No

HAEMATOLOGY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Anaesthetic used for blood collection: Pentbarbital sodium
- Animals fasted: Yes
- How many animals:

5 animals/sex/group

- Parameters examined: Red blood cell count, hemoglobin, hematocrit, mean corpuscular volume , mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, reticulocyte per centage, platelet count, white blood cell count, differential white blood cell count, prothrombin time, activated partial thromboplastin time.

CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Animals fasted: Yes
- How many animals:

5 animals/sex/group

- Parameters checked: ALP, total cholesterol, triglyceride, phospholipids, total bilirubin, glucose, bloo d urea nitrogen, creatinine, sodium, potassium, chloride, calcium, inorganic phosphorus, total protein, albumin, A/G ratio, AST, ALT, LDH, y-GTP, bile acid.

BLOOD HORMONE: No

URINALYSIS OF MALES: Yes

- Time schedule for collection of urine: On the final week of administration (Day 37 of administration) and on the final week of recovery (Day 13 of recovery)
- Metabolism cages used for collection of urine: Yes
- How many animals: 5 animals/group
- Parameters checked: pH, protein, ketones, glucose, occult blood, bilirubin, urobilinogen, color, s ediment, osmotic pressure, sodium, potassium, chloride, urine volume (24-hour volume)

NEUROBEHAVIOURAL (FUNCTIONAL) EXAMINATION: Yes

- Time schedule for examinations:

Males: On the final week of administration (Manipulative Test: Day 42, Measurement of Grip Strength and Motor Activity: Day 39). No examinations were performed during the recovery period Females in the mating groups: Day 5 of lactation

Females in the non-mating groups (satellite group): On the final week of administration (Manipulative Test: Day 42, Measurement of Grip Strength and Motor Activity: Day 41). No examinations were p erformed during the recovery period.

- Dose groups that were examined: All dose groups (5 animals/sex/group)
- Battery of functions tested:
- 1) Manipulative Test. Prayer's reaction, pupillary reflex, visual placing, startle reaction, withdrawal reflex, eyelid reflex, and righting reflex
- 2) Measurement of Grip Strength. Grip strength of forelimb and hind limb were measured by grip strength meter.
- 3) Measurement of Motor Activity. Motor activity was measured by a motor activity sensor for experimental animals SUPER-MEX (Muromachi Kikai. Co., Ltd.). The measurement was conducted for 20 min.

Sacrifice and pathology

GROSS PATHOLOGY: Yes

ORGAN WEIGHT: Yes [brain, thyroids (including parathyroids), thymus, heart, liver, kidney, spleen, adrenal gland, testis, epididymis, prostate, seminal vesicles, ovary, uterus]

HISTOPATHOLOGY: Yes, [brain, spinal cord, pituitary, eyeball (Harderian gland), submandibular gland, sublingual gland, trachea, thyroid, parathyroid, thymus, heart, lung (including bronchial), liver, kidney,

spleen, pancreas, adrenal gland, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, subm andibular lymph node, mesenteric lymph node, testis, epididymis, prostate, seminal vesicles, ovary, uterus, vagina, bladder, femur (including bone marrows), skeletal muscle, sciatic nerve, mammary gland, and gross abnormalities site.

Statistics

Changes in estrous cyclicity, copulation index and fertility index were analyzed by Fisher's test. G raded pathological data was analyzed by Mann-Whitney's U test (significance level = 0.05) and pathol ogical data with number of positive and negative animals was analyzed by one-sided Fisher's test. Ot her data obtained values in each animal or mean of a litter was one data, and these data were compar ed among the satellite groups and other among the groups. These data were analyzed using F-test for homogeneity of distribution. The Student's t-test and the Aspin-Welch's t-test were conducted for homogenous and non-homogenous distribution, respectively to compare the control and individu al treatment groups. Three or more groups setting, these data were analyzed using Bartlett's test for homogeneity of distribution. The Dunnett's multiple comparison test after the ANOVA and the Dunnett's-type mean rank sum test after Kruskal-Wallis's H test were conducted for homogenous and non-homogenous distribution, respectively to compare the control and individual treatment groups. Significance level was set at 0.05 compared with the control group and among the groups.

Results and discussion

Results of examinations

Clinical signs

no effects observed

Mortality

no mortality observed

Body weight and weight changes

no effects observed

Food consumption and compound intake (if feeding study)

no effects observed

Food efficiency

not examined

Water consumption and compound intake (if drinking water study)

not examined

Ophthalmological findings

not examined

Haematological findings

effects observed, treatment-related

Description (incidence and severity)

[At the end of dosing period]:

A significant prolongation of PT and a trend toward prolongation of APTT were observed in males at 250 mg/kg bw/day and above.

[At the end of recovery period]:

In males at 1000 mg/kg bw/day, PT tended to be prolonged, and APTT was significantly prolonged.

Clinical biochemistry findings

effects observed, treatment-related

Description (incidence and severity)

[At the end of dosing period]:

A significant increase in LDH was observed in males at 250 mg/kg bw/day and above.

[At the end of recovery period]:

There were no changes related to the test substance in any groups.

Urinalysis findings

effects observed, treatment-related

Description (incidence and severity)

[At the dosing period]:

A positive occult blood reaction (2 +) was observed in 1 male at 1000 mg/kg bw/day. Significant decreases in urine volume, sodium, potassium, and chloride excretion were observed in non-mated females at 1000 mg/kg bw/day.

[At the recovery period]:

There were no changes related to the test substance in any groups.

Behaviour (functional findings)

no effects observed

Immunological findings

not examined

Organ weight findings including organ / body weight ratios

no effects observed

Gross pathological findings

no effects observed

Neuropathological findings

not examined

Histopathological findings: non-neoplastic

no effects observed

Histopathological findings: neoplastic

not examined

Effect levels

Key result

true

Dose descriptor

NOAEL

Effect level

62.5

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male

Basis for effect level

clinical biochemistry

A significant increase in LDH was observed in males at 250 mg/kg bw/day and above.

haematology

A significant prolongation of PT and a trend toward prolongation of APTT were observed in males at 250 mg/kg bw/day and above.

Key result

true

Dose descriptor

NOAEL

Effect level

250

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

female

Basis for effect level

urinalysis

Significant decreases in urine volume, sodium, potassium, and chloride excretion were observed in non-mated females at 1000 mg/kg bw/day.

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6d.pdf

Applicant's summary and conclusion

Conclusions

The NOAEL for repeated dose toxicity in this study was determined to be 65 and 250 mg/kg bw/day for males and females, respectively.

Executive summary

A combined repeated oral dose toxicity study with the reproduction/developmental toxicity screening test was performed according to a Japanese guideline (similar to OECD TG 422).

SD rats were treated orally with 2-decyltetradecanol at the doses of 0, 65, 250 and 1000 mg/kg bw/day. Males (12 males/dose, of which 5 males/dose were assigned to the recovery group) were dosed for 42 days including a 14-day pre-mating period. Females (12 females/dose) were dosed for 41-55 days including 14-day premating, mating, and gestation periods and days until day 4 of lactation. In addition, as a satellite group, females (10 females/dose, of which 5 males/dose were assigned to the recovery group) received 0 and 1000 mg/kg bw/day for 42 days without mating.

The following findings were observed in the examination during the administration period or at the end of administration period. In the urinalysis, a positive occult blood reaction (2 +) was observed in 1 male at 1000 mg/kg bw/day. Significant decreases in urine volume, sodium, potassium, and chloride excretion were observed in non-mated females at 1000 mg/kg bw/day. In the haematology, a significant prolongation of PT and a trend toward prolongation of APTT were observed in males at 250 mg/kg bw/day and above. In the clinical chemistry, a significant increase in LDH was observed in males at 250 mg/kg bw/day and above. At the end of the recovery period, APTT was significantly prolonged, PT tended to

be prolonged, and LDH tended to increase in males at 1000 mg/kg bw/day. However, it was a reversible change because the degree was reduced.

Based on the above results, NOAEL for the repeated dose toxicity of 2-decyltetradecanol was determined to be 65 and 250 mg/kg bw/day for males and females, respectively.

Genetic toxicity

Genetic toxicity in vitro

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.001

UUID: c9f6a730-c475-494b-b906-66c4c2901eb7

Dossier UUID: Author:

Date: 2023-01-31T10:11:21.000+09:00

Remarks:

Administrative data -

Endpoint

in vitro gene mutation study in bacteria

Type of information

experimental study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

Reverse Mutation Test of 2-Decyltetradecanol on Bacteria. / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals

genetic toxicity in vitro, other

Version / remarks

Simiral to OECD TG 471 (Bacterial Reverse Mutation Assay)

Deviations

no

GLP compliance

yes (incl. QA statement)

Test material

Test material information

2-Decyltetradecanol

Specific details on test material used for the study

- -Name of test material (as cited in study report): 2-Decyltetradecanol
- Analytical purity: 98.4%
- Storage condition of test material: Seald and refrigerated (actual temperature: 3-7°C)
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Method

Species / strain

Species / strain / cell type

S. typhimurium TA 1535, TA 1537, TA 98 and TA 100 bacteria

Species / strain / cell type

E. coli WP2 uvr A

bacteria

Metabolic activation

with and without

Metabolic activation system

S9 mix: SD male rat liver, induced by phenobarbital and 5,6-benzoflavone

Justification for deviation from the high dose level

-S9 mix:

313, 625, 1250, 2500, 5000 μ g/plate (TA100, TA1535, TA98, TA537 and WP2uvrA strains) +S9 mix:

313, 625, 1250, 2500, 5000 µg/plate (TA100, TA1535, TA98, TA537 and WP2uvrA strains)

Maximum concentration was established based on the result of the preliminary test at concentration up to 5000 ug/plate. In this test, no growth inhibition was observed for all strains with and without S9 mix.

Vehicle / solvent

- Vehicle (s)/ solvent (s) used: acetone

Controls

Untreated negative controls

no

Negative solvent / vehicle controls

ves

True negative controls

no

Positive controls

ves

Positive control substance

other:

-S9 mix: 2-(2-Furyl)-3-(5-nitro-2-furyl) acrylamide (AF-2) (TA100, WP2uvrA, TA98), Sodium azide (SAZ) (TA1535) and 9-Aminoacridine (9 AA) (TA1537)

+S9 mix: 2-Aminoanthracene (2AA) (TA1535, WP2uvrA), Benzo[a]pyrene (B[a]P) (TA100, TA98, TA1537)

Details on test system and experimental conditions

METHOD OF APPLICATION: Preincubation

DURATION

- Preincubation period: 20 min at 37°C

- Exposure duration:48 hrs NUMBER OF PLATES: 2 NUMBER OF REPLICATIONS: 2 DETERMINATION OF CYTOTOXICITY

- Method: other: growth inhibition

Evaluation criteria

A chemical was judged to be mutagenic when the mean number of revertant colonies per plate increased more than twice that of the negative control and when the dose-related and reproducible i ncrease was observed.

Statistics

no

Results and discussion

Test results

Key result

false

Species / strain

S. typhimurium TA 1535 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 1537 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 98 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Key result

false

Species / strain

S. typhimurium TA 100

bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Key result

false

Species / strain

E. coli WP2 uvr A

bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Any other information on results incl. tables

Figures and Tables (in Japanese) are available in the following full report of the study.

https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6e.pdf

Please also see the attached files (Tables in English)

Overall remarks, attachments

Attachments

Attached (sanitised) documents for publication

58670-89-6_Ames Tables.xlsx / 21.773 KB (application/vnd.openxmlformats-officedocument.spreadsheetml.sheet)

Applicant's summary and conclusion

Conclusions

Interpretation of results (migrated information): negative In a bacterial reverse mutation assay using Salmonella typhimurium TA100, TA1535, TA98, and TA 1537, and Escherichia coli WP2uvrA, 2-decyltetradecanol was negative with or without metabolic activation.

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.002

UUID: 63737a49-7c59-4e53-9d1b-17e8e1778cc4

Dossier UUID: Author:

Date: 2023-01-13T10:45:47.000+09:00

Remarks:

Administrative data -

Endpoint

in vitro chromosome aberration study in mammalian cells

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

In Vitro Chromosomal Aberration Test of 2-Decyltetradecanol on Cultured Chinese Hamster Cells. / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals genetic toxicity in vitro, other

Version / remarks

Simiral to OECD TG 473 (In Vitro Mammalian Chromosomal Aberration Test)

Deviations

no

GLP compliance

yes

Type of assay

in vitro mammalian chromosome aberration test in vitro cytogenicity / chromosome aberration study in mammalian cells

Test material

Test material information

2-Decyltetradecanol

Specific details on test material used for the study

- -Name of test material (as cited in study report): 2-Decyltetradecanol
- Analytical purity: 98.4%
- Storage condition of test material: Seald and refrigerated (actual temperature: 3-7°C)
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Method

Species / strain

Species / strain / cell type

Chinese hamster lung (CHL/IU) mammalian cell line

Metabolic activation

with and without

Metabolic activation system

S9 mix; SD male rat liver, induced by phenobarbital and 5,6-benzoflavone

Justification for deviation from the high dose level

Cell growth inhibition study:

0.055, 0.11, 0.22, 0.44, 0.88, 1.8, 3.5 mg/mL

Main study:

-S9 (short-term treatment): 0.44, 0.88, 1.8, 3.5 mg/mL

+S9 (short-term treatment): 0.44, 0.88, 1.8, 3.5 mg/mL

-S9 (continuous treatment, 24hr): 0.044, 0.088, 1.8, 3.5 mg/mL

Vehicle / solvent

- Vehicle(s)/solvent(s) used: acetone

Controls

Untreated negative controls

no

Negative solvent / vehicle controls

yes

True negative controls

no

Positive controls

yes

Positive control substance

cyclophosphamide

+S9

mitomycin C

-S9

Details on test system and experimental conditions

METHOD OF APPLICATION:

Exposure duration:

- [short-term treatment]: 6 hrs + 18 hr,
- [continuous treatment]: 24 hrs

SPINDLE INHIBITOR: Colcemid

STAIN: Giemsa stain (3 v/v%) for 8 min.

NUMBER OF REPLICATIONS: 2

NUMBER OF CELLS EVALUATED: 100 + 100 cells /concentration

DETERMINATION OF CYTOTOXICITY

- Method: relative total growth

Evaluation criteria

The frequency of cells with structural chromosomal aberrations and polyploid cells was tested for si gnificance by Fisher's exact test (one-sided test, P<0.01) between the negative control and test sub stance treated groups. If a significant difference was observed, a Chochran-Armitage trend tests (on e-sided test, P<0.01) was performed for dose dependency. The results of these tests were used as a r eference for a comprehensive evaluation, taking into account biological considerations.

Statistics

Yes

Results and discussion

Test results

Key result

false

Species / strain

Chinese hamster lung (CHL/IU) mammalian cell line

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity

Vehicle controls validity

valid

Untreated negative controls validity

not examined

True negative controls validity

not examined

Positive controls validity

valid

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6f.pdf

Applicant's summary and conclusion

Conclusions

Interpretation of results (migrated information): Negative with or without metabolic activation. In an in vitro chromosomal aberration test using CHL/IU cells, 2-decyltetradecanol was negative with or without metabolic activation.

Toxicity to reproduction

Toxicity to reproduction

ENDPOINT_STUDY_RECORD: Toxicity to reproduction. 001

UUID: 7bf79153-d395-4e39-878d-83435f7108e4

Dossier UUID: Author:

Date: 2023-01-13T10:44:19.000+09:00

Remarks:

Administrative data

Endpoint

reproductive toxicity, other A combined repeated dose/reproductive developmental toxicity study

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Repeated dose toxicity: oral / Repeated dose toxicity: oral. 001 / 2-Decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6

Data source -

Reference

Combined repeat dose and reproductive/developmental toxicity screening test of 2-decyltetradecanol o / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6d.pdf

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

other: Guideline for Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test in Mammalian Species (Chemical Substances Control Law of Japan)

Version / remarks

Simiral to OECD TG422

GLP compliance

yes

Limit test

no

Test material

Test material information

2-Decyltetradecanol

Specific details on test material used for the study

- -Name of test material (as cited in study report): 2-Decyltetradecanol
- Analytical purity: 98.4%
- Storage condition of test material: Seald and refrigerated (actual temperature: 3-8°C)
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Test animals

Species

rat

Strain

other: Crl: CD (SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation: Male: 342.9-448.9 g, Female: 206.9-281.0 g
- Housing: Animals were individually housed in bracket-type metallic wire-mesh cages ($220W \times 270D \times 190H$ mm), from gestation day 18 to lactation day 4, Dams were bred individually or with individual littermates in plastic cages ($350W \times 400D \times 180H$ mm) and bedding.
- Diet: Solid feed (CE-2: CLEA Japan Inc.) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation period: 15 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 21.0-25.0 (actual temperature: 22.0-25.5°C)
- Humidity (%): 40.0-75.0% (actual humidity: 46.0-66.0%)
- Air changes (per hr): 15
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 7:00-19:00)

Administration / exposure

Route of administration

oral: gavage

Vehicle

corn oil

Details on exposure

- Amount of vehicle (if gavage): 4 mL/kg
- Dosing volume: 4 mL/kg

Details on mating procedure

- M/F ratio per cage:1/1
- Length of cohabitation: up to 14 days
- Proof of pregnancy: vaginal plug / sperm in vaginal smear referred to as day 0 of pregnancy

Analytical verification of doses or concentrations

yes

Details on analytical verification of doses or concentrations

The concentrations of each test suspension used at day1 of administration were analyzed by HPLC. The results showed that the concentration of each test suspension was 98.9 to 101.3% of the nominal concentration.

Duration of treatment / exposure

Males: 42 days including 14 days pre-mating

Females (mating group): 41-55 days including 14 day5 pre-mating, mating and gestation periods and

the days until day 4 of lactation

Female (non-mating, satellite group): 42 days

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
62.5	mg/kg bw/day (actual dose received)
Dose / conc.	
250	mg/kg bw/day (actual dose received)
Dose / conc.	
1000	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

Mating group: 12 animals/sex /dose (0, 62.5, 250, and 1000 mg/kg bw/day).

Non-mating group (Satellite group): 10 females/dose (0 and 1000 mg/kg bw/day).

Recovery group: 5 males/dose in the mating group (0 and 1000 mg/kg bw/day) and 5 females/dose

in the non-mating groups (0 and 1000 mg/kg bw/day)

Control animals

yes, concurrent vehicle

Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the high dose was set to 1000 mg/kg bw/day, which is the upper limit in test guideline (Chemical Substances Control Law of Japan) and the6 intermediate dose and low dose were set to 250 mg/kg bw/day and 62.5 mg/kg bw/day, respectively.

[14-day preliminary study]

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0, 100, 300 or 1,000 mg/kg bw/day. No treatment-related effects on clinical signs, body weight, haematology, blood chemistry, or pathology were observed up to the highest dose of 1000 mg/kg bw/day in both sexes.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

Examinations

Parental animals: Observations and examinations

CAGE SIDE OBSERVATIONS: Yes

- Time schedule: 2 times/day (before administration, after administration) during the administration p eriod. Once a day during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule:

Males: At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration and Days 7 and 14 of recovery period.

Females in the mating groups: At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration period, once during lactation period (lactation day 0 from day 4) for delivered females and Day 49 for not delivered females until Day 49.

Females in the non-mating groups (satellite group): At the end of acclimation period, Days 8, 15, 24, 30, 36, and 42 of administration and Days 7 and 14 of recovery period.

BODY WEIGHT: Yes

- Time schedule for examinations:

Males: Days 1, 4, 7, 14, 21, 28, 35, and 42 of administration period and on the day of necropsy, and Days 1, 7 and 14 of recovery period and on the day of necropsy.

Females in the mating groups: Days 1, 4, 7, and 14 of administration period, Days 0, 7, 14, and 20 of gestation, Days 0, 4 of lactation, and on the day of necropsy.

Females in the non-mating groups (satellite group): Days 1, 4, 7, 14, 21, 28, 35, and 42 of administration period and on the day of necropsy, and Days 1, 7 and 14 of recovery period and on the day of necropsy.

Food consumption: Yes

Measurement of food consumption was conducted on all animals at the following frequencies: Males: Days 1-2, 7-8, 14-15, 29-30, 35-36 and 41-42 of administration period. Days 6-7 and 12-13 of r ecovery period.

Females in the mating groups: Days 1-2, 7-8 and 14-15 of administration period. Days 0-1, 7-8, 14-15, and 20-21 of gestation period. Days 3-4 of lactation period. Days 29-30, 35-36, 41-42 and 48-49 of administration period for unmated females.

Females in the non-mating groups (satellite group): Days 1-2, 7-8, 14-15, 21-22, 29-30, 35-36 and 41-42 of administration period. Days 6-7 and 12-13 of recovery period.

OPHTHALMOSCOPIC EXAMINATION: No

HAEMATOLOGY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Anaesthetic used for blood collection: Pentbarbital sodium

- Animals fasted: Yes
- How many animals:

5 animals/sex/group

- Parameters examined: Red blood cell count, hemoglobin, hematocrit, mean corpuscular volume , mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, reticulocyte per centage, platelet count, white blood cell count, differential white blood cell count, prothrombin time, activated partial thromboplastin time.

CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Animals fasted: Yes
- How many animals:

5 animals/sex/group

- Parameters checked: ALP, total cholesterol, triglyceride, phospholipids, total bilirubin, glucose, bloo d urea nitrogen, creatinine, sodium, potassium, chloride, calcium, inorganic phosphorus, total protein, albumin, A/G ratio, AST, ALT, LDH, y-GTP, bile acid.

BLOOD HORMONE: No

URINALYSIS OF MALES: Yes

- Time schedule for collection of urine: On the final week of administration (Day 37 of administration) and on the final week of recovery (Day 13 of recovery)
- Metabolism cages used for collection of urine: Yes
- How many animals: 5 animals/group
- Parameters checked: pH, protein, ketones, glucose, occult blood, bilirubin, urobilinogen, color, s ediment, osmotic pressure, sodium, potassium, chloride, urine volume (24-hour volume)

NEUROBEHAVIOURAL (FUNCTIONAL) EXAMINATION: Yes

- Time schedule for examinations:

Males: On the final week of administration (Manipulative Test: Day 42, Measurement of Grip Strength and Motor Activity: Day 39). No examinations were performed during the recovery period Females in the mating groups: Day 5 of lactation

Females in the non-mating groups (satellite group): On the final week of administration (Manipulative Test: Day 42, Measurement of Grip Strength and Motor Activity: Day 41). No examinations were p erformed during the recovery period.

- Dose groups that were examined: All dose groups (5 animals/sex/group)
- Battery of functions tested:
- 1) Manipulative Test. Prayer's reaction, pupillary reflex, visual placing, startle reaction, withdrawal reflex, eyelid reflex, and righting reflex
- 2) Measurement of Grip Strength. Grip strength of forelimb and hind limb were measured by grip strength meter.
- 3) Measurement of Motor Activity. Motor activity was measured by a motor activity sensor for experimental animals SUPER-MEX (Muromachi Kikai. Co., Ltd.). The measurement was conducted for 20 min.

Oestrous cyclicity (parental animals)

Vaginal smears were collected from all females in the mating groups and microscopically examined every day from the day after the start of administration until the day copulation was confirmed. During the pre-mating administration period, vaginal smear pictures were classified as proestrus, estrus, metestrus or diestrus and examined for the frequency of estrus and interval between estruses (estrous cycle). During the mating period, vaginal smears were examined for the presence of sperm.

Sperm parameters (parental animals)

Parameters examined in all P male parental generations: testis weight, epididymis weight, histopatho logical examinations for testes, epididymides, seminal vesicle and ventral prostate.

Litter observations

PARAMETERS EXAMINED: The following parameters were examined in F1 offspring: Number and sex of pups, stillbirths, live births, postnatal mortality, presence of gross anomalies, and weight gain. GROSS EXAMINATION OF DEAD PUPS: Yes, for external and internal abnormalities.

Postmortem examinations (parental animals)

METHOD OF SACRIFICED: All animals were sacrificed by exsanguination under pentbarbital sodium anesthesia.

SACRIFICE: Males of mating groups and females of non-mating groups: On Day 43 (next day after the last administration), Maternal animals: on Day 5 of lactation period, and Males and females of r ecovery groups: on Day 15 of recovery period.

ORGAN WEIGHT: Yes [brain, thyroids (including parathyroids), thymus, heart, liver, kidney, spleen, adre nal gland, testis, epididymis, prostate, seminal vesicles, ovary, uterus]

HISTOPATHOLOGY: Yes, [brain, spinal cord, pituitary, eyeball (Harderian gland), submandibular gland, sublingual gland, trachea, thyroid, parathyroid, thymus, heart, lung (including bronchial), liver, kidney, spleen, pancreas, adrenal gland, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, submand ibular lymph node, mesenteric lymph node, testis, epididymis, prostate, seminal vesicles, ovary, uterus, vagina, bladder, femur (including bone marrows), skeletal muscle, sciatic nerve, mammary gland, and gross abnormalities site.

Postmortem examinations (offspring)

SACRIFICE

- The F1 offsprings were euthanized on PND4 by exsanguination under sevoflurane anesthesia. GROSS NECROPSY: Yes
- Gross necropsy consisted of external and internal examinations including the cervical, thoracic, and abdominal viscera.

HISTOPATHOLOGY / ORGAN WEIGTHS

- Not examined.

Statistics

Changes in estrous cyclicity, copulation index and fertility index were analyzed by Fisher's test. G raded pathological data was analyzed by Mann-Whitney's U test (significance level = 0.05) and pathol ogical data with number of positive and negative animals was analyzed by one-sided Fisher's test. Ot her data obtained values in each animal or mean of a litter was one data, and these data were compar ed among the satellite groups and other among the groups. These data were analyzed using F-test for homogeneity of distribution. The Student's t-test and the Aspin-Welch's t-test were conducted for homogenous and non-homogenous distribution, respectively to compare the control and individu al treatment groups. Three or more groups setting, these data were analyzed using Bartlett's test for homogeneity of distribution. The Dunnett's multiple comparison test after the ANOVA and the Dunnett's-type mean rank sum test after Kruskal-Wallis's H test were conducted for homogenous and non-homogenous distribution, respectively to compare the control and individual treatment groups. Significance level was set at 0.05 compared with the control group and among the groups.

Reproductive indices

Each parameter was determined by the following equations: Copulation index (%) = (No. of copulated pares / No. of mated pares) × 100 Fertility index (%) = (No. of fertile males / No. of copulated pares) × 100 Delivery index (dams, %) = (No. of dams with live offspring / No. of pregnant dams) × 100 Implantation index (%) = (No. of implantation scars / No. of corpora lutea) × 100 Sex ratio = No. of male offspring / (No. of male offspring + No. of female offspring) Delivery index (offspring) = (No. of offspring at birth/ No. of implantation scars) × 100 Birth index = (No. of live offspring at birth/No. of offspring at birth) × 100

Offspring viability indices

Viability index = (No. of live offspring 4days after birth / No. of live offspring at birth) × 100

Results and discussion

Results: P0 (first parental generation) -

General toxicity (P0) -

Clinical signs

no effects observed

Mortality

no mortality observed

Body weight and weight changes

no effects observed

Food consumption and compound intake (if feeding study)

no effects observed

Food efficiency

not examined

Water consumption and compound intake (if drinking water study)

not examined

Ophthalmological findings

not examined

Haematological findings

effects observed, treatment-related

Description (incidence and severity)

See 7.5.1 Repeated dose toxicity.001

Clinical biochemistry findings

effects observed, treatment-related

Description (incidence and severity)

See 7.5.1 Repeated dose toxicity.001

Urinalysis findings

effects observed, treatment-related

Description (incidence and severity)

See 7.5.1 Repeated dose toxicity.001

Behaviour (functional findings)

no effects observed

Immunological findings

not examined

Organ weight findings including organ / body weight ratios

no effects observed

Gross pathological findings

no effects observed

Neuropathological findings

not examined

Histopathological findings: non-neoplastic

no effects observed

Histopathological findings: neoplastic

not examined

Reproductive function / performance (P0)

Reproductive function: oestrous cycle

no effects observed

Reproductive function: sperm measures

no effects observed

Reproductive performance

no effects observed

Details on results (P0) -

General toxicity: See 7.5.1 Repeated dose toxicity.001 Reproductive function / performance: no effects observed

Effect levels (P0) –

Key result

false

Dose descriptor

NOAEL

Effect level

1000 mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

reproductive performance

No reproductive effects were observed in males and females up to 1000 mg/kg bw/day.

Key result

false

Dose descriptor

NOAEL

Effect level

62.5 mg/kg bw/day (actual dose received)

Based on test mat.
Sex male
Basis for effect level haematology A significant prolongation of PT and a trend toward prolongation of APTT were observed in males at 250 mg/kg bw/day and above. clinical biochemistry A significant increase in LDH was observed in males at 250 mg/kg bw/day and above.
Key result false
Dose descriptor NOAEL
Effect level
250 mg/kg bw/day (actual dose received)
Based on test mat.
Sex female
Basis for effect level urinalysis Significant decreases in urine volume, sodium, potassium, and chloride excretion were observed in non-mated females at 1000 mg/kg bw/day.
Results: F1 generation
General toxicity (F1)
Clinical signs no effects observed
Mortality / viability no mortality observed
Body weight and weight changes no effects observed
Gross pathological findings no effects observed
Details on results (F1)
No effects observed.
Effect levels (F1)

Key result

false

Dose descriptor

NOAEL

Generation

F1

Effect level

1000

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

other:

There were no effects on developmental parameters up to 1000 mg/kg bw/day.

Overall reproductive toxicity -

Key result

false

Reproductive effects observed

no

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6d.pdf

Applicant's summary and conclusion

Conclusions

A combined repeated oral dose toxicity study with the reproduction/developmental toxicity screening test was performed according to a Japanese guideline (similar to OECD TG 422). There were no effects on the reproductive and developmental parameters up to 1000 mg/kg bw/day. The NOAEL for the rat reproductive/developmental toxicity of 2-decyltetradecanol was regarded as 1000 mg/kg bw/day, the highest dose tested.

References

Reference Substances

REFERENCE_SUBSTANCE: 2-decyltetradecanol

UUID: ECB5-ed0a3e06-c7c8-45c8-809e-469a2979924d

Dossier UUID: Author:

Date: 2023-01-13T10:44:00.000+09:00

Remarks:

Reference substance name

2-decyltetradecanol

IUPAC name

2-decyltetradecan-1-ol

Inventory

Inventory number

Inventory name

2-decyltetradecanol

Inventory

EC Inventory

Inventory number

261-385-0

CAS number

58670-89-6

Molecular formula

C24H50O

Description

CAS number

58670-89-6

Synonyms

Synonyms

Identity

1-Tetradecanol, 2-decyl-

Identity

1-Tetradecanol, 2-decyl-

Molecular and structural information

Molecular formula

C24H500

Molecular weight

354.6532

SMILES notation

CCCCCCCCCC(CO)CCCCCCCCC

InChl

InChl=1/C24H50O/c1-3-5-7-9-11-13-14-16-18-20-22-24(23-25)21-19-17-15-12-10-8-6-4-2/h24-25H ,3-23H2,1-2H3

Structural formula

Test Materials

TEST_MATERIAL_INFORMATION: 2-Decyltetradecanol

UUID: a0e6e333-0eed-44e4-99a8-a45917a54c4c

Dossier UUID: Author:

Date: 2023-01-13T10:44:08.000+09:00

Remarks:

Name

2-Decyltetradecanol

Composition

Composition

Type

Constituent

Reference substance

2-decyltetradecanol / 2-decyltetradecan-1-ol / 58670-89-6 / 261-385-0

EC number EC name
261-385-0 EC Inventory
CAS number CAS name

58670-89-6 **IUPAC name**

2-decyltetradecan-1-ol

Concentration

98.4 % (v/v)

Literatures

LITERATURE: Combined repeat dose and reproductive/ developmental toxicity screening test of 2decyltetradecanol oral administration in rats

UUID: 138047cc-9b02-48b4-8507-46a113fe884e

Dossier UUID: Author:

Date: 2022-12-01T15:38:23.000+09:00

Remarks:

General information

Reference Type

study report

Title

Combined repeat dose and reproductive/developmental toxicity screening test of 2-decyltetradecanol oral administration in rats

Author

Ministry of Health, Labour and Welfare (MHLW), Japan

Year

2013

Bibliographic source

available in the web of Japan Existing Chemical Data Base (JECDB) at https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58670-89-6d.pdf

Testing facility

the Hatano Research Institute, Food and Drug Safety Center

Report date

2013-09-25

Report number

R-12-016

LITERATURE: In Vitro Chromosomal Aberration Test of 2-Decyltetradecanol on Cultured Chinese Hamster Cells.

UUID: 36c464ef-e046-40b1-818f-09c352ee65eb

Dossier UUID: Author:

Date: 2023-01-10T16:35:08.000+09:00

Remarks:

General information

Reference Type

study report

Title

In Vitro Chromosomal Aberration Test of 2-Decyltetradecanol on Cultured Chinese Hamster Cells.

Author

Ministry of Health, Labour and Welfare (MHLW), Japan

Year

2013

Bibliographic source

Japan Existing Chemical Data Base (JECDB) https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF58 670-89-6f.pdf

Testing facility

the Hatano Research Institute, Food and Drug Safety Center

Report date

2013-04-09

Report number

G-12-012

LITERATURE: Reverse Mutation Test of 2-Decyltetradecanol on Bacteria.

UUID: 0704af16-c457-4971-9eb5-eb3d28379e39

Dossier UUID: Author:

Date: 2023-01-10T15:56:46.000+09:00

Remarks:

General information

Reference Type

study report

Title

Reverse Mutation Test of 2-Decyltetradecanol on Bacteria.

Author

Ministry of Health, Labour and Welfare (MHLW), Japan

Year

2013

Bibliographic source

Japan Existing Chemical Data Base (JECDB) https://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF14 59-93-4e.pdf

Testing facility

the Hatano Research Institute, Food and Drug Safety Center

Report date

2013-03-22

Report number

M-12-023