PROASTを用いたベンチマークドース法適用ガイダンス

(PROASTは、RIVMのホームページ(http://www.rivm.nl/en/Library/Scientific/Models/PROAST)より 無償でダウンロードすることができる。プログラムはS言語で書かれているため、使用にあた っては、統計ソフトウエアS plusもしくはRをインストールする必要がある。)

最初に、マニュアルに従って、データファイルを作成する。病理所見の発現頻度等の非連続 データの場合は、モデルタイプとしてQuantalを選択し、体重、血液/血液生化学検査値や器官 重量等の連続データの場合は、モデルタイプとしてContinuousを選択する。非連続データ及び 連続データそれぞれに対する適用方法を以下に示す。なお、基本的なソフトウエアの操作法は ここでは記載しない(ダウンロードした圧縮ファイルに同梱されているPROASTマニュアルを 参照)。このガイダンスでは、一般的な毒性試験データを無変換で使用する際の原則的な手法 としてのBenchmark response (BMR)の設定や最適なモデル及びBenchmark dose lower confidence limit (BMDL)の選定基準について推奨される手法を紹介する。(具体的なBMDLの計算方法に ついてはAppendix1:「PROAST (version 28.1)を用いた計算手順」及びAppendix2:「PROAST (version 28.1)の計算結果の読み方」を参照。)

非連続データ

1. BMRの設定

10%の過剰リスクを選択することが推奨される。

2. モデルへのフィッテングパラメータとして係数のConstraintの有無

フィッテングパラメータとして係数のConstraintの有無を選択できる。選択したモデルの生物 学的意義付けによるConstraintの有無の選択に科学的理由が無い限り、ConstraintがYesとNoの 両方でのフィッテングを思考することを推奨する。

3. 適合モデルの選択

選択できるすべてのモデルのフィッテングを試みる。適合モデルの判定結果がyesとなったモ デルのみ採用する。

4. BMDLの選定

原則的には、適合したモデルから算出されたBMDLの中から、安全サイドの観点に立って、 最も低いBMDLを選定する。しかし、BMD/BMDL比が10以上もしくは最低用量/BMDL比が100 以上となる場合は、BMDL値の信頼度が低いことから、除外することを推奨する。

連続データ

1. BMRの設定

デフォルトとして対照群の1SD(1標準偏差)の変化分に対応するリスクを選択することが 推奨される(例数が少ない場合等で、対照群の分散が極端に小さくなる場合には、10%の変 化分に対応するリスクを選択することも検討する)。

2. 適合モデル及びBMDLの選定

選択できるすべてのモデルのフィッテングを試みる。原則的には、結果が表示されたBMDL の中から、安全サイドの観点に立って、最も低いBMDLを選定する。しかし、BMD/BMDL比 が10以上もしくは最低用量/BMDL比が100以上となる場合は、BMDL値の信頼度が低いことか ら、除外することを推奨する。

<非連続データ(quantal data)の計算手順> ▶ 使用したソフトウエア: proast28.1、R version 2.13.0 サンプルとして使用したデータ:BMD_95636_kidney_hyaline_droplet_m.txt \geq 下記のようにデータファイルを作成する <サンプルデータ(Tab 区切りテキストファイル)> -----BMD_95636_kidney_hyaline_droplet_m <1 行目:ファイル名> <2行目:データ列の数> 3 0 0 4 <3 行目:各列のデータタイプ、4 は quantal data> Dose n kidney_hyaline_droplet_m <4 行目:各列のタイトルを Tab 区切りで入力> <5 行目以降:各列データを Tab 区切りで入力> 0 10 $\mathbf{2}$ 7 30 10 100 10 7 300 10 8 1000 10 10 -----

以下の記述において、Console 画面に表示される文字は黒字で、ユーザーが行う操作と解説 は赤字で記入した。

Rを立ち上げて、メニューのパッケージから proast28.1 を読み込む。

Console 画面で、上記のように作成したデータファイルを以下の様なコマンドで R 用に変換する。 > BMD_95636_kidney_hyaline_droplet_m.txt<-f.scan('BMD_95636_kidney_hyaline_droplet_m.txt') Read 1 item Read 1 item Read 3 items Read 3 items [1] "V1" "V2" "V3"

Console 画面で以下のコマンドを入力する。上記で変換したファイルを括弧内に引用して PROAST を起動する

> f.proast(BMD_95636_kidney_hyaline_droplet_m.txt)

<WELCOME to PROAST の画面が表示される(表示内容は省略)>

<以下は constraint no(≒restriction 無し)とする場合の計算過程を例示する。>

Q1: Which variable do you want to consider as independent variable?

(e.g. dose, age)

1: dose

2: n

3: kidney_hyaline_droplet_m

選択: 1を選択する(用量データが何列目であるかを設定)

What type of response data do you want to consider?

- 1: continuous
- 2: binary
- 3: ordinal
- 4: quantal
- 5: continuous, clustered
- 6: quantal, clustered
- 7: continuous, summary data

選択: 4を選択する(非連続の係数データの選択)

Do you want to fit a set of models, or choose a single model?

- 1: single model
- 2: set of models
- 3: set of models, but change settings first

選択: 2を選択する(非連続用のモデルを一度に計算する)

The following responses are quantal:

1 2 3 kidney_hyaline_droplet_m Which response(s) you want to analyse by set of models > 3 を選択する(計算対象となる非連続データが何列目であるかを設定)

Enter number for the associated sample sizes

1: dose

2: n

3: kidney_hyaline_droplet_m

選択: 2を選択する(例数に相当するデータが何列目であるかを設定)

Give number of factor serving as potential covariate (e.g.sex)

```
-- type 0 if none ---
1: dose
2: n
3: kidney_hyaline_droplet_m
選択: 0を選択する(共変数データが何列目であるかを設定するが、この例では無しなの
で0を選択)
Give value for extra risk
type 0 if you do not need conf. interv. > 0.1 (BMR として 0.1 を入力)
Do you want to constrain the models to have finite slope at zero?
1: no
2: yes (not recommended!)
選択: constrain (restriction) 無しとする場合は0を選択、ありとする場合は1を選択
  What plot do you want?
 1: pi vs. x
2: pi vs. log(x)
3: log(pi) vs. x
4: log(pi) vs. log(x)
5: arcsin.sqrt(pi) vs. x
6: cumulative pi vs. x (do not use for binomial fractions)
 7: cumulative pi vs. log-x (do not use for binomial fractions)
選択: 1 を選択する(表示するグラフの目盛りの設定:対数変換等無しの場合1を選択)
```

<計算過程と結果が表示される>

give name for file to store summary table (or 0 if none) > (計算結果を保存するファイル名 を入力する:例 BMD_95636_kidney_hyaline_droplet_m_no.fs)

<以下の最終結果の表示の後に Main Menu が表示される>

endpoint	min-BMDL	max-BMDL	# models
kidney_hyaline_droplet_m	0.000383	21.7	9

MAIN MENU :

What do you want to do?

1: Change settings

2: Choose (another) model

3: Choose other start values

...<中略>...

14: End session

選択:続けて constraint yes の計算を行う場合は2を選択しQ1に戻る、終了する場合は 14を選択

終了後、constraint noのBMDLとconstraint yesのBMDLの中から、一番低い値を採用する。 ただし、BMD/BMDL比が10以上もしくは最低用量/BMDL比が100以上となる場合は除外する。 <連続データ (continuous data) の計算の流れ> > 使用したソフトウエア: proast28.1、R version 2.13.0 サンプルとして使用したデータ: BMD_101144_albumin.txt 下記のようにデータファイルを作成する <サンプルデータ (Tab 区切りテキストファイル) >

BMD_1	01144_a	lbumin		<1 行目:ファイル名>
4				<2 行目 : データ列の数>
0	10	0	0 <3	3行目:各列のデータタイプ、10は continuous data >
dose	mean	\mathbf{sd}	number	<4 行目:各列のタイトルを Tab 区切りで入力>
0	3.32	0.30	5	<5 行目以降:各列データを Tab 区切りで入力>
0.4	3.25	0.19	5	
2	3.02	0.12	5	
10	2.98	0.14	5	
50	2.45	0.11	5	

以下の記述において、Console 画面に表示される文字は黒字で、ユーザーが行う操作と解説 は赤字で記入した。

Rを立ち上げて、メニューのパッケージから proast28.1 を読み込む。

Console 画面で、作成したデータファイルを以下の様なコマンドで R 用に変換する。

> BMD101144_albumin.txt<-f.scan('BMD101144_albumin.txt')

Read 1 item

Read 1 item

Read 4 items

Read 4 items

[1] "V1" "V2" "V3" "V4"

以下のコマンドで PROAST のプログラムを変換したファイルを用いて起動する

> f.proast(BMD101144_albumin.txt)

<WELCOME to PROAST の画面が表示される>

Q1: Which variable do you want to consider as independent variable? (e.g. dose, age)

- 1: dose
- 2: mean
- 3: sd
- 4: number

選択: 1を選択する(用量データが何列目であるかを設定)

What type of response data do you want to consider?

- 1: continuous
- 2: binary
- 3: ordinal
- 4: quantal
- 5: continuous, clustered
- 6: quantal, clustered
- 7: continuous, summary data

選択: 7を選択する(連続の係数データの選択)

Do you want to fit a nested set of models

- 1: single model
- 2: nested set of models
- 3: nested set of models, but change settings first
- 4: selection of model 5

選択: 2を選択する(非連続用のモデルを一度に計算する)

※通常 2 を選択するが対数変換等を行う場合は、ここで 3 を選択して、計算条件 を変更できる

The following responses are continuous:

- 1 2 mean 3
- 4

Give number(s) of the response(s) you want to analyse by set of models

------>2を選択する(計算対象となる連続データが何列目であるかを設定)

Give value for CES (always positive)

```
type 0 if none > BMR を入力する。1 SD の場合は"sd/mean"の計算値を、10%の場合は 0.1 を入力する。 上記サンプルデータの場合は 0.30/3.32=0.09 を入力
```

Do you want to include Hill model family?

1: yes

2: no

選択: 1を選択して Hill モデルも計算させる

Give number of factor serving as potential covariate (e.g.sex)

-- type 0 if none ---1: dose

2: mean

3: sd

4: number

```
選択: 0を選択する(共変数データが何列目であるかを設定するが、この例では共変数デ
ータは無いので0を選択)
```

Which plot type do you want?

- 1: x-y
- 2: log(x)-y
- 3: x-log(y)
- 4: log(x)-log(y)
- 5: sqrt(x)-y

```
6: sqrt(x)-log(y)
```

- 7: x-sqrt(y)
- 8: log(x)-sqrt(y)

```
選択: 2 を選択する(表示するグラフの目盛りの設定: x 軸を対数目盛で表示する場合は
2)
```

Give number of the variation statistic associated to mean

1: dose

2: mean

3: sd

4: number

選択: 3:分散値が入力された列を指定する

Do you have standard deviations or standard errors associated with the means?

1: standard deviations

2: standard errors

選択: 1:上記の分散値が SD であるか SE であるかを選択する。

Give the associated sample size

- 1: dose
- 2: mean
- 3: sd
- 4: number

選択: 4:群あたりの動物数が入力された列を指定する

<Hill モデル以外の計算過程と結果が表示される>

response: mean

ANALYSIS WITH EXPONENTIAL MODELS						
model	converged	npar	loglik			
full	1	6	38.12			
m1-	1	2	17.74			
m2-	1	3	35.01			
m3-	1	4	36.58			
m4-	1	4	35.68			
selected model: m2-						
re-fitting selected model m2-						
m2-	1	3	35.01			

calculating C.I.....

the CED (in orig. units) and the 90 % confidence interval for group 1 is:

<mark>17.497</mark>	\longrightarrow	BMD
14.63348	\longrightarrow	BMDL
21.75598	\longrightarrow	BMDU (Benchmark dose upper confidence limit)

before fitting Hill model

give name for file to store results (or type 0 if none) > 0 を入力、※結果を保存する場合は ファイル名を入力するが、proast28.1 ではうまく機能しない <続いて Hill モデルの計算過程と結果が表示される>

response: mean

ANALYSIS WITH HILL MODELS

model	converged	npar	loglik		
full	NA	6	38.12		
m1-	1	2	17.74		
m2-	1	3	35.22		
m3-	1	4	36.47		
m4-	1	4	35.74		
selected	model: m2-				
re-fitting selected model m2-					
m2-	1	3	35.22		

calculating C.I.....

the CED (in orig. units) and the 90 % confidence interval for group 1 is:

<mark>15.831</mark>	\longrightarrow	BMD
12.89235	\longrightarrow	BMDL
20.19156	\longrightarrow	BMDU

<結果の表示の後に Main Menu が表示される> ※結果ファイルの保存ができないので、上記 Log をコピーペースとして、文書ファイル等 に保存する。

MAIN MENU :

What do you want to do ?

- 1: Change settings
- 2: Choose (another) model

...<中略>...

12: End session

選択:終了する場合は12を選択。同じデータセットで条件を変えて計算を行う場合は、1 を選択、他のモデルで計算するときは2を選択。

終了後 EXPONENTIAL MODELS の BMDL と HILL MODELS の BMDL を比較し、低 い方の値を採用する。ただし、BMD/BMDL 比が 10 以上もしくは最低用量/BMDL 比が 100 以 上となる場合は除外する。

Appendix 2. PROAST (version 28.1)の計算結果の読み方

quantal data(非連続データ)

BMD_988	339_kidney	/s_basophi	lic_change	e_of_the_t	ubular_epithe	elium		
model	npar	loglik	acc	constraint	BMD	BMDL	BMDU	
null	1	-21.07		no	NA	NA	NA	gamma
full	4	-9.77	-	no	NA	NA	NA	T
one-stage	2	-10.38	yes	no	81.4	47.5	153	l ³ 1
two-stage	3	-10.12	no	no	128	NA	NA	
log-logist	3	-9.92	yes	no	139	44.1	274	
Weibull	3	-10.03	yes	no	136	34.8	296	
log-prob	3	-9.83	yes	no	139	48.4	257	
gamma	3	-9.98	yes	no	139	34	280	採用したモデルのプロット ――――> ゔ 'ゟ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚
logistic	2	-11.2	yes	no	292	173	466	-2.0 -1.5 -1.0 -0.5 0.0
probit	2	-11.03	yes	no	266	NA	415	
E2:	2	-11.03	yes	no	266	NA	NA	算出されたBMDLの中から最も低いBMDLを選定。ただし、BMD/BMDL比が
H2:	2	-9.84	yes	no	132	NA	NA	10以上もしくは最低用量/BMDL比が100以上となる場合は除外。
null	1	-21.07		yes	NA	NA	NA	
full	4	-9.77		yes	NA	NA	NA	
one-stage	2	-10.38	yes	yes	81.4	47.5	153	
two-stage	3	-10.12	no	yes	128	NA	NA	
log-logist	3	-9.92	yes	yes	139	44.3	274	
Weibull	3	-10.03	yes	yes	136	51	296	
log-prob	3	-9.83	yes	yes	139	48.4	257	
gamma	3	-9.98	yes	yes	139	51.5	280	
logistic	2	-11.2	yes	yes	292	173	466	
probit	2	-11.03	yes	yes	266	NA	415	
E2:	2	-11.03	yes	yes	266	NA	NA	
H2:	2	-9.84	yes	yes	132	NA	NA	
BMR: 0.1								
P-value C	GoF: 0.05							

continuous data (連続データ)

