


Name: OECD\_SIDS / SUBSTANCE : 2,4-Dimethylbenzenesulfonic acid / 2,4-dimethylbenzenesulfonic acid / 88-61-9 Tue, 29 Nov 2022, 15:15:34+0900 /

Legal entity owner: National Institute of Health Sciences

**Printing date:** 2022-11-29T15:15:35.007+09:00

# **Table of Contents**

| 0/0                                                                       | 1    |
|---------------------------------------------------------------------------|------|
| National Institute of Health Science                                      | 2    |
| 2,4-Dimethylbenzenesulfonic acid                                          | 3    |
| 1 General information                                                     | 3    |
| 1.1 Identification                                                        | 3    |
| Identification                                                            | 3    |
| Identification                                                            | . 3  |
| 7 Toxicological information                                               | 4    |
| 7.5 Repeated dose toxicity                                                | 4    |
| 7.5.1 Repeated dose toxicity: oral                                        | 4    |
| Repeated dose toxicity: oral.001                                          | 4    |
| 7.6 Genetic toxicity                                                      | . 13 |
| 7.6.1 Genetic toxicity in vitro                                           | . 13 |
| Genetic toxicity in vitro.001                                             | . 13 |
| Genetic toxicity in vitro.002                                             | . 19 |
| 7.8 Toxicity to reproduction                                              | 23   |
| 7.8.1 Toxicity to reproduction                                            |      |
| Toxicity to reproduction.001                                              | . 23 |
| References                                                                | . 34 |
| Reference Substances                                                      |      |
| m-xylene-4-sulphonic acid                                                 | . 34 |
| Test Materials                                                            |      |
| 2,4-Dimethylbenzenesulfonic acid                                          | . 36 |
| Literatures                                                               | 37   |
| Combined repeated dose toxicity study with the reproductive/              |      |
| developmental toxicity screening test of 2,4-Dimethylbenzenesulfonic acid |      |
| by oral administration in rats                                            | 37   |
| In Vitro Chromosomal Aberration Test of on 2,4-Dimethylbenzenesulfonic    |      |
| acid Cultured Chinese Hamster Cells                                       | . 38 |
| Reverse Mutation Test of 2,4-Dimethylbenzenesulfonic acid on Bacteria     | 39   |
| Legal Entities                                                            | 40   |
| National Institute of Health Sciences                                     | . 40 |

# **DOSSIER:**

UUID: 0
Dossier UUID:

**Author:** 

Date: 2022-11-29T15:15:34.882+09:00

Remarks:

## Dossier header -

# **Dossier submission type**

Name

**OECD SIDS** 

Version

core 7.0

Name (given by user)

# **Dossier subject** -

## **Dossier subject**

2,4-Dimethylbenzenesulfonic acid / 2,4-dimethylbenzenesulfonic acid / 88-61-9

**Public name** 

**Submitting legal entity** 

National Institute of Health Science

Dossier creation date/time

Tue, 29 Nov 2022, 15:15:34+0900

**Used in category** 

# **LEGAL\_ENTITY: National Institute of Health Science**

UUID: f51e7b54-9211-4863-90ce-fcf8a155d647

Dossier UUID: Author:

**Date:** 2022-11-07T16:24:02.822+09:00

Remarks:

# **General information** -

Legal entity name

National Institute of Health Science

# 2,4-Dimethylbenzenesulfonic acid

# **General information**

## Identification

## Identification

SUBSTANCE: 2,4-Dimethylbenzenesulfonic acid

UUID: f37cc151-6c6c-4e4a-8f63-01f344b6b8eb

Dossier UUID: Author:

Date: 2022-11-29T15:08:23.069+09:00

Remarks:

### Substance name

2,4-Dimethylbenzenesulfonic acid

## Legal entity

National Institute of Health Sciences / Kawasaki / Japan

## Identification of substance

### Reference substance

m-xylene-4-sulphonic acid / 2,4-dimethylbenzenesulfonic acid / 88-61-9 / 201-843-9

EC number EC name
201-843-9 EC Inventory
CAS number CAS name

88-61-9 IUPAC name

2,4-dimethylbenzenesulfonic acid

# Role in the supply chain

## Manufacturer

false

## Importer

false

## Only representative

false

## Downstream user

false

# **Toxicological information**

## Repeated dose toxicity

Repeated dose toxicity: oral

ENDPOINT\_STUDY\_RECORD: Repeated dose toxicity: oral.001

UUID: 03fc6df8-c0f1-4273-a0bd-e15545463b81

Dossier UUID: Author:

Date: 2022-11-29T15:08:23.069+09:00

Remarks:

## Administrative data

## **Endpoint**

short-term repeated dose toxicity: oral

## Type of information

experimental study

## Adequacy of study

key study

## **Robust study summary**

false

## **Used for classification**

false

## **Used for SDS**

false

## Reliability

1 (reliable without restriction)

## Rationale for reliability incl. deficiencies

other: OECD Test Guideline study under GLP condition

## **Cross-reference**

### Reason / purpose for cross-reference

reference to same study 7.8.1 Toxicity to reproduction: Toxicity to reproduction. 001

## **Related information**

OECD / Toxicity to reproduction / Toxicity to reproduction.001 / 2,4-Dimethylbenzenesulfonic acid / 2,4-dimethylbenzenesulfonic acid / 88-61-9

## Data source

## Reference

Combined repeated dose toxicity study with the reproductive/developmental toxicity screening test of / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

#### **Data access**

data published

## Materials and methods

## Test guideline

#### Qualifier

according to guideline

### Guideline

OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)

#### **Deviations**

yes During the power outage (October 2, 2010) due to the inspection of the electrical equipmen t of the facility, the humidity increased (78%), the lights were turned off, and the ventilation was stopped.

However, no effect was observed on the test results.

## **GLP** compliance

yes

#### Limit test

no

## Test material

## **Test material information**

2,4-Dimethylbenzenesulfonic acid

## Specific details on test material used for the study

- Name of test material (as cited in study report): 2,4-Dimethylbenzenesulfonic acid
- Analytical purity: 99.7% (anhydrous equivalent, contained 16.1% water)
- Storage condition of test material: Room temperature, shading
- Stability under test conditions: The stability of test material was identified by analysis of the remaind er.

## **Test animals**

#### **Species**

rat

common rodent species

#### Strain

other: Crl:CD(SD)

## Sex

male/female

## Details on test animals or test system and environmental conditions

**TEST ANIMALS** 

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation:

Male: 355-428 g, Female: 220-249 g

- Housing:

Mating period: Stainless steel mesh cages for group housing (340W × 294D × 176H mm)

After 18 days of pregnancy: Stainless steel cage for delivery ( $340W \times 294D \times 176H$  mm) and bedding.

Other breeding period: 2-piece stainless steel mesh cage (170W × 294D × 176H mm/animal)

- Diet: Solid feed (CRF-1: Oriental Yeast Co., ltd.) was given ad libitum.

- Water: Tap water was given ad libitum.
- Acclimation period: 15 days

### **ENVIRONMENTAL CONDITIONS**

- Temperature (°C): 23±2°C (actual temperature: 21.9-24.1°C)
- Humidity (%): 55±15% (actual humidity: 52-78%)
- Air changes (per hr): 15-17
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 8:00~20:00)

## Administration / exposure

## Route of administration

oral: gavage

#### **Vehicle**

water for injection

## **Details on oral exposure**

- Amount of vehicle (if gavage): 5 mL/kg
- Dosing volume: 5 mL/kg

## Analytical verification of doses or concentrations

yes

## Details on analytical verification of doses or concentrations

Concentrations of the test solutions at the time of initial preparation were analyzed with HPLC. Ana lytical concentrations of the test solutions were all within the range of 96.0-98.5% of the nominal concentrations and both values were within the acceptable range.

## **Duration of treatment / exposure**

Males: 42 days including 14 days pre-mating, 14 days mating period and 14 days after the end of the mating period.

Females (mating): 42-46 days including 14 days pre-mating, mating and gestation periods and the days until day 4 of lactation. (no mating females: 41-43 days)

Females (satellite): 42 days

## Frequency of treatment

Once/day, 7 days/week

## **Doses / concentrations**

| Dose / conc. |                                     |
|--------------|-------------------------------------|
| 0            | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
| 20           | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
| 100          | mg/kg bw/day (actual dose received) |

### Dose / conc.

500 mg/kg bw/day (actual dose received)

#### No. of animals per sex per dose

Mating group: 12 animals/sex /dose (0, 20, 100, and 500 mg/kg bw/day). 5 males at 0 and 500 mg/kg bw/day were assigned to the recovery group.

Non-mating group (Satellite group): 10 females/dose (0 and 500 mg/kg bw/day). 5 females at each group were assigned to the recovery group.

## **Control animals**

yes, concurrent vehicle

## Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the high dose was set to 500 mg/kg bw/day, and the intermediate dose and low dose were set to 100 mg/kg bw/day and 20 mg/kg bw/day, respectively.

## [14-day preliminary study]

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0, 100, 300, 600 or 1000 mg/kg bw/day).

A moribund condition with dyspnea was seen in 1 male at 1000 mg/kg bw/day and 1 female at 600 mg/kg bw/day and was killed as impending. In males and females at 1000 mg/kg bw/day, irregular respiration was observed. In males and females at 600 mg/kg bw/day and above, decrease in body weight and food consumption, swelling of stomach wall were observed.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

## **Examinations**

## Observations and examinations performed and frequency

CAGE SIDE OBSERVATIONS: Yes

- Time schedule:

2 times/day (before administration, after administration) during the administration period. Once a day during the recovery period.

## DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule:

Male:

Detailed observation was conducted weekly during the administration and recovery periods.

Reactivity test, grip strength measurement, and motor activity measurement were performed once every 6 weeks after administration.

Female:

Detailed observation was conducted weekly during the administration and recovery periods. However, only the satellite group was observed for 6 weeks after administration.

Reactivity test, grip strength measurement, and motor activity measurement were performed on the day before anatomy in the parturition animals and once every 6 weeks in the satellite group.

## **BODY WEIGHT: Yes**

- Time schedule for examinations:

Males, females (satellite):

On days 1, 8, 15, 22, 29, 36, and 42 of administration period. On days 1, 8 and 14 of recovery period. Females (mating):

Before mating, measurements were taken on days 1, 8 and 15 of administration. Mated females were measured at gestation 0, 7, 14, and 20. The delivered females were measured on the day of delivery and 4 days after delivery.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

- Food consumption: Yes
- Time schedule for examinations:

Males, females (satellite):

On days 1, 8, 15, 29, 36, 42 of administration period.

On days 1, 8, 14 of recovery period.

Females (mating):

On days 1, 8, 15 of administration period, on days 0, 7, 14, 20 of gestation period, .on days 0, 4 of I actation period.

WATER INTAKE: No

OPHTHALMOSCOPIC EXAMINATION: No

HAEMATOLOGY: Yes

- Time schedule for collection of blood:

At the end of administration period, or at the end of recovery period in both sexes

- Anaesthetic used for blood collection: ether
- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters examined: red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, reticulocyte percentage, platelet count, white blood cell count, differential white blood cell count, prothrombin time, activated p artial thromboplastin time.

## CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood:

At the end of administration period, or at the end of recovery period in both sexes

- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters checked: total protein, albumin, A/G ratio, total bilirubin, glucose, total cholesterol, trigly ceride, phospholipid, AST, ALT, LDH, ALP,  $\gamma$ -GT, CK, BUN, creatinine, sodium, potassium, chloride, ca lcium, inorganic phosphorus

### **BLOOD HORMONE: Yes**

- Time schedule for collection of serum:

At the end of administration period, or at the end of recovery period in both sexes

- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters checked: Triiodothyronine (T3), Thyroxin (T4), and thyroid stimulating hormone (TSH)

**URINALYSIS: Yes** 

- Time schedule for collection of urine:

Male, female satellite group: Fresh urine was collected before administration once at week 6 of administration period.

- Metabolism cages used for collection of urine: No

A urine collector to collect fresh urine samples under ad libitum feeding and drinking conditions.

- How many animals:

At the end of administration period:

Male: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (satellite): 10 females/dose (0 and 500 mg/kg bw/day)

- Parameters checked:

Fresh urine: pH, protein, glucose, ketones, bilirubin, occult blood, urobilinogen

NEUROBEHAVIOURAL EXAMINATION: Yes

- Time schedule for examinations:

Males and females (satellite): Week 6 of administration period.

Females (mating): The animals were delivered on the day before dissection (4 days after delivery).

- Dose groups that were examined: Autopsy animals after the end of the administration period
- Battery of functions tested:
- 1) Reflex/reactions (Manipulative Test). Visual forelimb placing response, auditory reactivity, tail pinch response, pupillary reflex, aerial righting reaction.
- 2) Measurement of Grip Strength. Grip strength of forelimb and hind limb was measured by MK-380CM (Muromachi kikai Co.,Ltd.).
- 3) Measurement of Spontaneous Motor Activity. Spontaneous motor activity was measured by SCANET MV-10 (MELQUEST Ltd.).

Motor activity was measured for 60 min.

## Sacrifice and pathology

GROSS PATHOLOGY: Yes ORGAN WEIGHT: Yes

: pituitary, thyroids, heart, liver, kidney, thymus, spleen, adrenal gland, testes, epididymides, ventral prostate, seminal vesicles (including coagulating gland), ovaries, uterus, brain, lung

HISTOPATHOLOGY: Yes: brain. pituitary, spinal cord, eye ball, thyroid, parathyroid, heart, nasal cavity, trachea, lung, liver, kidney, thymus, spleen, adrenal glands, stomach, small intestine (including duo denum), large intestine, testis, epididymis, ventral prostate, seminal vesicles (including coagulating gland), ovaries, uterus, vagina, urinary bladder, lymph nodes (axillary, inguinal, etc.), peripheral nerve (sciatic nerve), bone marrows (femur), bone (femur), mammary gland, muscle.

#### **Statistics**

For copulation index, fertility index, gestation index, urinalysis and histopathological findings, s tatistical difference between each treatment group and the control group was analyzed using by the C hi-square test.

For quantitative data, homogeneity of variance was tested using Bartlett method first. If the variance was homogenous, statistical difference between each treatment group and the control group was analyzed using Dunnett method. If not homogenous, statistical difference between each treatment g roup and the control group was tested using Kurskal-Wallis rank sum test and the significant difference between the medium control and treated groups was analyzed by nonparametric Dunnett multiple comparison test. For comparison of quantitative data between two groups in female satellite animals and male recovery test, homogeneity of variance was analyzed by F-test. Then, if homogenous, student's t-test was applied. If not homogenous, Aspin-Welch's t-test was used.

# Results and discussion

## **Results of examinations**

## **Clinical signs**

effects observed, treatment-related

## **Description (incidence and severity)**

**CLINICAL SIGNS:** 

[At the administration period]:

Abnormal respirations (males and females: respiratory noise, irregular respiration, females: oral breathing) were observed in males and females at 500 mg/kg bw/day. Soiled perigenital region was observed in females at 500 mg/kg bw/day.

[At the recovery period]:

Deep respiration was observed in males at 500 mg/kg bw/day.

**DETAILED CLINICAL OBSERVATIONS:** 

[At the administration period]:

Abnormal respiration (males and females: respiratory noise, males: irregular respiration), and soiled perinasal were observed in males and females at 500 mg/kg bw/day.

[At the recovery period]

Deep respiration, soiled perigenital region and low temperature of the skin were observed in males at 500 mg/kg bw/day.

## Mortality

mortality observed, non-treatment-related

### **Description (incidence)**

One female in the satellite group at 500 mg/kg bw/day died on day 10. In this fatal case, erosion and inflammation in the larynx through the upper part of the trachea were observed. Obstruction in the upper trachea by pus and congestion/edema of the lung were also observed, suggesting that the cause of death was suffocation in this female. To investigate obstruction in the nasal cavity, a detailed histopathological examination in the nasal mucosa of all animals was conducted; however, there were no lesions causing obstruction in any animal. An intubation error could not be excluded as the cause of death. Therefore, this death was treatment-related but was not toxicologically relevant.

## Body weight and weight changes

effects observed, treatment-related

## Description (incidence and severity)

[At the administration period]:

Decreased tendency body weight gain was observed in males at 500 mg/kg bw/day.

[At the recovery period]:

Decreased tendency body weight gain was observed in males at 500 mg/kg bw/day.

## Food consumption and compound intake (if feeding study)

no effects observed

## Food efficiency

not examined

## Water consumption and compound intake (if drinking water study)

not examined

## **Ophthalmological findings**

not examined

## **Haematological findings**

not specified

## **Description (incidence and severity)**

[At the end of administration period]:

Decreased MCH was observed in males at 500 mg/kg bw/day. This finding was not associated with other changes and was confined to the highest dose and no longer apparent after the recovery per iod. This change may be treatment related but were not necessarily adverse.

[At the end of recovery period]:

There were no changes related to the test substance in any groups.

## **Clinical biochemistry findings**

not specified

## **Description (incidence and severity)**

Including blood hormones (T3, T4, TSH)

## CLINICAL BIOCHEMISTRY:

[At the end of administration period]:

Decreased total protein and albumin were observed in males at 500 mg/kg bw/day. Decreased BUN creatinine and IP were observed in mating females at 500 mg/kg bw/day. Decreased total protein, increased AST were observed in satellite females at 500 mg/kg bw/day.

These findings were not associated with other signs, organ weight changes, or histopathological a lterations and were confined to the highest dose and no longer apparent after the recovery period. These changes may be treatment related but were not necessarily adverse.

[At the end of recovery period]:

There were no changes related to the test substance in any groups.

#### **BLOOD HORMONES:**

There were no changes related to the test substance in any groups at the administration and recovery periods.

## **Urinalysis findings**

no effects observed

## Behaviour (functional findings)

no effects observed

## Immunological findings

not examined

## Organ weight findings including organ / body weight ratios

no effects observed

## **Gross pathological findings**

no effects observed

## Neuropathological findings

not examined

## Histopathological findings: non-neoplastic

no effects observed

## Histopathological findings: neoplastic

not examined

## Effect levels -

## **Key result**

true

## **Dose descriptor**

**NOAEL** 

#### Effect level

100

mg/kg bw/day (actual dose received)

### Based on

test mat.

#### Sex

male/female

#### Basis for effect level

clinical signs

At 500 mg/kg bw/day, abnormal respiration was observed in males and females.

## Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study. https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9d.pdf

# **Applicant's summary and conclusion**

#### **Conclusions**

Based on the changes in the clinical sign, the NOAEL of repeated dose toxicity was determined to be 100 mg/kg bw/day in male and female rats.

## **Executive summary**

In the combined repeated dose and reproductive/developmental screening test (OECD TG422), SD rats were treated orally with the test substance at the doses of 0, 20, 100 and 500 mg/kg bw/day. Males (12 animales/dose) were dosed for 42 days including a 14 day pre-mating period. Females (12 animals/dose) were dosed for 41-46 days including 14 day pre-mating, mating, and gestation periods and days until day 4 of lactation. In addition, as the satellite study group of females (10 females/group) was dosed 0 and 500 mg/kg/day for 42 days, with 5 animals/group treated with recovery.

Irregular respiration, deep respiration, and dyspnea, which were considered to represent main toxic effects, were observed in males and females at the 500 mg/ kg bw/day. Decreased tendency body weight gain was observed in males at 500 mg/kg bw/day. In the hematological examination, decreased MCH was observed in males at 500 mg/kg bw/day. In the clinical chemistry, decreased total protein and albumin in males, decreased BUN, creatinine and IP in mating females, decreased total protein, and increased AST in satellite females were observed at 500 mg/kg bw/day. These findings were not associated with other signs, organ weight changes, or histopathological alterations and were confined to the highest dose and no longer apparent after the recovery period. These changes may be treatment related but were not necessarily adverse.

Since respiratory abnormalities were observed at 500 mg/kg bw/day for both sexes, The NOAELs for repeated dose toxicity of 2,4-dimethylbenzenesulfonic acid were determined to be 100 mg/kg bw/day in male and female rats.

## **Genetic toxicity**

## Genetic toxicity in vitro

ENDPOINT\_STUDY\_RECORD: Genetic toxicity in vitro.001

UUID: 4ea32234-fc9e-469a-af00-29d60f718f20

Dossier UUID: Author:

Date: 2022-11-14T14:51:43.000+09:00

Remarks:

## Administrative data -

## **Endpoint**

in vitro gene mutation study in bacteria

## Type of information

experimental study

## Adequacy of study

key study

## **Robust study summary**

false

## **Used for classification**

false

## **Used for SDS**

false

### Reliability

1 (reliable without restriction)

## Rationale for reliability incl. deficiencies

guideline study under GLP condition Reliability 1

## Data source -

## Reference

Reverse Mutation Test of 2,4-Dimethylbenzenesulfonic acid on Bacteria. / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

### **Data access**

data published

# Materials and methods

## **Test guideline**

### Qualifier

according to guideline

### Guideline

OECD Guideline 471 (Bacterial Reverse Mutation Assay) in vitro gene mutation study in bacteria

### **Deviations**

no

#### **Qualifier**

according to guideline

### Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals genetic toxicity in vitro, other

### **Deviations**

no

## **GLP** compliance

yes

## Type of assay

bacterial reverse mutation assay in vitro gene mutation study in bacteria

## Test material

## **Test material information**

2,4-Dimethylbenzenesulfonic acid

## Specific details on test material used for the study

Purity: 99.7% (anhydrous equivalent, contained 16.1% water)

## Method -

## Species / strain

## Species / strain / cell type

S. typhimurium TA 1535, TA 1537, TA 98 and TA 100 bacteria

## Species / strain / cell type

E. coli WP2 uvr A pKM 101

bacteria

## Metabolic activation

with and without

#### Metabolic activation system

S9 mix: SD male rat liver, induced by phenobarbital and 5,6-benzoflavone

## Test concentrations with justification for top dose

-S9 mix:

313, 625, 1250, 2500, 5000 µg/plate (TA 1535, TA 1537, TA 98 and TA 100 strains)

313, 625, 1250, 2500, 5000 µg/plate (WP2uvrA/pKM101 strain)

+S9 mix (10%):

313, 625, 1250, 2500, 5000 µg/plate (TA 1535, TA 1537, TA 98 and TA 100 strains)

313, 625, 1250, 2500, 50000  $\mu$ g/plate (WP2uvrA/pKM101 strain) +S9 mix (30%): 313, 625, 1250, 2500, 5000  $\mu$ g/plate (TA 1535, TA 1537, TA 98 and TA 100 strains) 313, 625, 1250, 2500, 50000  $\mu$ g/plate (WP2uvrA/pKM101 strain)

Maximum concentration was established based on the result of the preliminary test at concentration up to 5000 ug/plate. In this test, the growth inhibition was not observed for all strains with or without S9 mix.

#### Vehicle / solvent

- Vehicle(s)/solvent(s) used: Distilled water

#### **Controls**

## **Untreated negative controls**

no

## Negative solvent / vehicle controls

yes

### True negative controls

nc

## **Positive controls**

yes

#### Positive control substance

9-aminoacridine

9-amimoacridine hydrochloride (9AA): -S9 mix: (TA1537)

sodium azide

NaN3: -S9 mix: (TA1535)

furylfuramide

2-(2-Furyl)-3-(5-nitro-2-furyl) acrylamide (AF-2): -S9 mix: (TA100, TA98, WP2 uvrA/pkM101)

other: 2-aminoanthracene (2AA)

+S9 mix: (TA1535, TA100, TA98, TA1537 and WP2 uvrA/pkM101)

## Details on test system and experimental conditions

METHOD OF APPLICATION: Preincubation DURATION- Preincubation period: 20 min at 37°C

- Exposure duration: ca.48 hrs

NUMBER OF PLATES: 3 NUMBER OF REPLICATIONS: 2 DETERMINATION OF CYTOTOXICITY - Method: other: growth inhibition

## **Evaluation criteria**

A chemical was judged to be mutagenic when the mean number of revertant colonies per plate increased more than twice that of the negative control and when the dose-related and reproducible i ncrease was observed.

## **Statistics**

nο

## **Results and discussion**

## **Test results**

## **Key result**

true

## Species / strain

S. typhimurium TA 1535 bacteria

### Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

## **Key result**

true

## Species / strain

S. typhimurium TA 1537 bacteria

## Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

## **Key result**

true

## Species / strain

S. typhimurium TA 98

bacteria

## Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

## Key result

true

## Species / strain

S. typhimurium TA 100 bacteria

## Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

## Key result

true

## Species / strain

E. coli WP2 uvr A pKM 101

bacteria

### Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

# Any other information on results incl. tables

Figures and Tables (in Japanese) are available in the following full report of the study. https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9e.pdf

Please also see the attached files (Tables in English)

# **Applicant's summary and conclusion**

## **Conclusions**

Negative with or without metabolic activation

## **Executive summary**

In a bacterial reverse mutation assay using Salmonella typhimurium TA100, TA1535, TA98, and TA 1537, and Escherichia coli WP2uvrA/pKM101 (OECD TG 471), 2,4-Dimethylbenzenesulfonic acid was negative with or without metabolic activation.

## ENDPOINT\_STUDY\_RECORD: Genetic toxicity in vitro.002

**UUID:** 240d6348-464c-478f-9217-9454e4f61bb3

Dossier UUID: Author:

Date: 2022-11-14T14:54:55.000+09:00

Remarks:

## Administrative data -

## **Endpoint**

in vitro cytogenicity / chromosome aberration study in mammalian cells

## Type of information

experimental study

## Adequacy of study

key study

## **Robust study summary**

false

## **Used for classification**

false

### **Used for SDS**

false

## Reliability

1 (reliable without restriction)

### Rationale for reliability incl. deficiencies

guideline study under GLP condition Reliability 1

## Data source -

### Reference

In Vitro Chromosomal Aberration Test of on 2,4-Dimethylbenzenesulfonic acid Cultured Chinese Hamster / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

## **Data access**

data published

## Materials and methods

## Test guideline

### Qualifier

according to guideline

## Guideline

OECD Guideline 473 (In Vitro Mammalian Chromosomal Aberration Test)

in vitro cytogenicity / chromosomal aberration study in mammalian cells (from 26 September 2014)

### **Deviations**

nΛ

## Qualifier

according to guideline

#### Guideline

JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals genetic toxicity in vitro, other

### **Deviations**

no

## **GLP** compliance

yes

## Type of assay

in vitro mammalian chromosome aberration test in vitro cytogenicity / chromosome aberration study in mammalian cells

## Test material

## **Test material information**

2,4-Dimethylbenzenesulfonic acid

## Specific details on test material used for the study

Purity: 99.7% (anhydrous equivalent, contained 16.1% water)

## Method -

### Species / strain

## Species / strain / cell type

Chinese hamster lung (CHL/IU)

mammalian cell line

## Cytokinesis block (if used)

colcemid

## Metabolic activation

with and without

## Metabolic activation system

S9 mix: SD male rat liver, induced by phenobarbital and 5,6-benzoflavone

## Test concentrations with justification for top dose

Cell growth inhibition study

- -S9 mix (short-term treatment): 0.015, 0.03, 0.059, 0.12, 0.24, 0.48, 0.95, 1.9 mg/mL
- +S9 mix (short-term treatment): 0.015, 0.03, 0.059, 0.12, 0.24, 0.48, 0.95, 1.9 mg/mL
- -S9 mix (continuous treatment, 24hr): 0.015, 0.03, 0.059, 0.12, 0.24, 0.48, 0.95, 1.9 mg/mL
- -S9 mix (continuous treatment, 48hr): 0.015, 0.03, 0.059, 0.12, 0.24, 0.48, 0.95, 1.9 mg/mL Preliminary study
- -S9 mix (short-term treatment): 0.24, 0.48, 0.95, 1.9 mg/mL
- +S9 mix (short-term treatment): 0.24, 0.48, 0.95, 1.9 mg/mL
- -S9 mix (continuous treatment, 24hr): 0.24, 0.48, 0.95, 1.9 mg/mL
- -S9 mix (continuous treatment, 48hr): 0.24, 0.48, 0.95, 1.9 mg/mL

Main study

-S9 (short-term treatment): 0.48, 0.95, 1.4, 1.9 mg/mL

+S9 (short-term treatment): 0.48, 0.95, 1.4, 1.9 mg/mL

-S9 mix (continuous treatment, 24hr): 0.48, 0.95, 1.4, 1.9 mg/mL

-S9 mix (continuous treatment, 48hr): 0.48, 0.95, 1.4, 1.9 mg/mL

Confirmation study

+S9 (short-term treatment): 0.95, 1.4, 1.9 mg/mL

### Vehicle / solvent

- Vehicle(s)/solvent(s) used: Distilled water

#### **Controls**

## Untreated negative controls

no

## Negative solvent / vehicle controls

yes

## True negative controls

no

#### **Positive controls**

yes

## Positive control substance

benzo(a)pyrene

+S9

mitomycin C

-S9

## Details on test system and experimental conditions

METHOD OF APPLICATION: Exposure duration: [short-term treatment]: 6 hrs + 20 hr, [continuous

treatment]: 24 hrs or 48 hrs SPINDLE INHIBITOR: Colcemid

STAIN: Giemsa stain (2.5 v/v%) for 12 min.

NUMBER OF REPLICATIONS: 2

NUMBER OF CELLS EVALUATED: 100 + 100 cells /concentration

**DETERMINATION OF CYTOTOXICITY** 

- Method: relative total growth

## **Evaluation criteria**

For the evaluation of the frequencies of structural aberrations and of polyploidy induced, the following criteria were employed. Appearance incidence of cell with chromosomal aberrations:Negative (-): less than 5%, Equivocal(±): 5% or more and less than 10%, Positive(+): 10% or more

#### **Statistics**

no

## Results and discussion

## **Test results**

## Key result

true

### Species / strain

Chinese hamster lung (CHL/IU)

mammalian cell line

## Metabolic activation

with and without

## Genotoxicity

negative

## Cytotoxicity / choice of top concentrations

no cytotoxicity

## Vehicle controls validity

valid

## Untreated negative controls validity

not examined

## True negative controls validity

not examined

## Positive controls validity

valid

# Any other information on results incl. tables

Figures and Tables (in Japanease) are available in the following full report of the study. https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9f.pdf

Please also see the attached files (Tables in English)

# **Applicant's summary and conclusion**

## **Conclusions**

Negative with or without metabolic activation

## **Executive summary**

In an in vitro chromosomal aberration test using CHL/IU cells (OECD TG 473), 2,4-dimethylbenzenesulfonic acid was negative with or without metabolic activation.

## **Toxicity to reproduction**

## **Toxicity to reproduction**

ENDPOINT\_STUDY\_RECORD: Toxicity to reproduction.001

UUID: b99d415f-750a-4ed1-a267-347b52c101ac

Dossier UUID: Author:

Date: 2022-11-29T14:06:17.424+09:00

Remarks:

## **Administrative data**

## **Endpoint**

reproductive toxicity, other Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test

## Type of information

experimental study

## Adequacy of study

key study

## **Robust study summary**

false

#### **Used for classification**

false

### **Used for SDS**

false

### Reliability

1 (reliable without restriction)

## Rationale for reliability incl. deficiencies

other: OECD Test Guideline study under GLP condition

## **Cross-reference**

## Reason / purpose for cross-reference

reference to same study 7.5.1 Repeated dose toxicity: oral: Repeated dose toxicity: oral. 001

## **Related information**

OECD / Repeated dose toxicity: oral / Repeated dose toxicity: oral.001 / 2,4-Dimethylbenzenesulfonic acid / 2,4-dimethylbenzenesulfonic acid / 88-61-9

## Data source -

#### Reference

Combined repeated dose toxicity study with the reproductive/developmental toxicity screening test of / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

### **Data access**

data published

# Materials and methods

## **Test guideline**

#### **Oualifier**

according to guideline

#### Guideline

OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)

### **Deviations**

yes During the power outage (October 2, 2010) due to the inspection of the electrical equipmen t of the facility, the humidity increased (78%), the lights were turned off, and the ventilation was stopped.

However, no effect was observed on the test results.

## **GLP** compliance

yes

#### Limit test

no

## Test material -

### **Test material information**

2,4-Dimethylbenzenesulfonic acid

## Specific details on test material used for the study

- Name of test material (as cited in study report): 2,4-Dimethylbenzenesulfonic acid
- Analytical purity: 99.7% (anhydrous equivalent, contained 16.1% water)
- Storage condition of test material: Room temperature, shading
- Stability under test conditions: The stability of test material was identified by analysis of the remaind er.

## Test animals -

### **Species**

rat

#### **Strain**

other: Crl:CD(SD)

#### Sex

male/female

## Details on test animals or test system and environmental conditions

**TEST ANIMALS** 

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation: Male: 355-428 g, Female: 220-249 g

## - Housing:

Mating period: Stainless steel mesh cages for group housing ( $340W \times 294D \times 176H$  mm) After 18 days of pregnancy: Stainless steel cage for delivery ( $340W \times 294D \times 176H$  mm) and bedding. Other breeding period: 2-piece stainless steel mesh cage ( $170W \times 294D \times 176H$  mm/animal)

- Diet: Solid feed (CRF-1: Oriental Yeast Co., ltd.) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation period: 15 days

### **ENVIRONMENTAL CONDITIONS**

- Temperature (°C): 23±2°C (actual temperature: 21.9-24.1°C)
- Humidity (%): 55±15% (actual humidity: 52-78%)
- Air changes (per hr): 15-17
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 8:00~20:00)

## **Administration / exposure**

## **Route of administration**

oral: gavage

## **Vehicle**

water for injection

## **Details on exposure**

- Amount of vehicle (if gavage): 5 mL/kg

- Dosing volume: 5 mL/kg

## **Details on mating procedure**

- M/F ratio per cage:1/1
- Length of cohabitation: up to 14 days
- Proof of pregnancy: vaginal plug / sperm in vaginal smear referred to as day 0 of pregnancy

## Analytical verification of doses or concentrations

yes

## Details on analytical verification of doses or concentrations

Concentrations of the test solutions at the time of initial preparation were analyzed with HPLC. Ana lytical concentrations of the test solutions were all within the range of 96.0-98.5% of the nominal concentrations and both values were within the acceptable range.

## **Duration of treatment / exposure**

Males: 42 days including 14 days pre-mating, 14 days mating period and 14 days after the end of the mating period.

Females (mating): 42-46 days including 14 days pre-mating, mating and gestation periods and the days until day 4 of lactation. (no mating females: 41-43 days)

Females (satellite): 42 days

## Frequency of treatment

Once/day, 7 days/week

## Doses / concentrations

| Dose / conc. |                                     |
|--------------|-------------------------------------|
| 0            | mg/kg bw/day (actual dose received) |
| Dose / conc. |                                     |
|              |                                     |
| 20           | mg/kg bw/day (actual dose received) |
| Dose / conc. | mg/kg bw/day (actual dose received) |

Dose / conc.

mg/kg bw/day (actual dose received)

Dose / conc.

500 mg/kg bw/day (actual dose received)

#### No. of animals per sex per dose

Mating group: 12 animals/sex /dose (0, 20, 100, and 500 mg/kg bw/day). 5 males at 0 and 500 mg/kg bw/day were assigned to the recovery group.

Non-mating group (Satellite group): 10 females/dose (0 and 500 mg/kg bw/day). 5 females at each group were assigned to the recovery group.

## **Control animals**

yes, concurrent vehicle

## Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the high dose was set to 500 mg/kg bw/day, and the intermediate dose and low dose were set to 100 mg/kg bw/day and 20 mg/kg bw/day, respectively.

## [14-day preliminary study]

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0, 100, 300, 600 or 1000 mg/kg bw/day).

A moribund condition with dyspnea was seen in 1 male at 1000 mg/kg bw/day and 1 female at 600 mg/kg bw/day and was killed as impending. In males and females at 1000 mg/kg bw/day, irregular respiration was observed. In males and females at 600 mg/kg bw/day and above, decrease in body weight and food consumption, swelling of stomach wall were observed.

- Rationale for animal assignment (if not random): Body weight-balanced randomization

## **Examinations** -

### Parental animals: Observations and examinations

CAGE SIDE OBSERVATIONS: Yes

- Time schedule:

2 times/day (before administration, after administration) during the administration period. Once a day during the recovery period.

## DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule:

Male:

Detailed observation was conducted weekly during the administration and recovery periods.

Reactivity test, grip strength measurement, and motor activity measurement were performed once every 6 weeks after administration.

Female:

Detailed observation was conducted weekly during the administration and recovery periods. However, only the satellite group was observed for 6 weeks after administration.

Reactivity test, grip strength measurement, and motor activity measurement were performed on the day before anatomy in the parturition animals and once every 6 weeks in the satellite group.

## **BODY WEIGHT: Yes**

- Time schedule for examinations:

Males, females (satellite):

On days 1, 8, 15, 22, 29, 36, and 42 of administration period. On days 1, 8 and 14 of recovery period.

## Females (mating):

Before mating, measurements were taken on days 1, 8 and 15 of administration. Mated females were measured at gestation 0, 7, 14, and 20. The delivered females were measured on the day of delivery and 4 days after delivery.

## FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

- Food consumption: Yes
- Time schedule for examinations:

Males, females (satellite):

On days 1, 8, 15, 29, 36, 42 of administration period.

On days 1, 8, 14 of recovery period.

Females (mating):

On days 1, 8, 15 of administration period, on days 0, 7, 14, 20 of gestation period, .on days 0, 4 of I actation period.

WATER INTAKE: No

#### OPHTHALMOSCOPIC EXAMINATION: No

### HAEMATOLOGY: Yes

- Time schedule for collection of blood:

At the end of administration period, or at the end of recovery period in both sexes

- Anaesthetic used for blood collection: ether
- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day) Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters examined: red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, reticulocyte percentage, platelet count, white blood cell count, differential white blood cell count, prothrombin time, activated p artial thromboplastin time.

## CLINICAL BIOCHEMISTRY: Yes

- Time schedule for collection of blood:

At the end of administration period, or at the end of recovery period in both sexes

- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters checked: total protein, albumin, A/G ratio, total bilirubin, glucose, total cholesterol, tri glyceride, phospholipid, AST, ALT, LDH, ALP,  $\gamma$ -GT, CK, BUN, creatinine, sodium, potassium, chloride, calcium, inorganic phosphorus

## **BLOOD HORMONE: Yes**

- Time schedule for collection of serum:

At the end of administration period, or at the end of recovery period in both sexes

- Animals fasted: Yes
- How many animals:

At the end of administration period:

Males: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (mating): 12 females/dose (0, 20, 100, and 500 mg/kg bw/day),

Females (satellite): 5 females/dose (0 and 500 mg/kg bw/day)

At the end of recovery period:

5 males/dose and 5 females (satellite)/dose (0 and 500 mg/kg bw/day)

- Parameters checked: Triiodothyronine (T3), Thyroxin (T4), and thyroid stimulating hormone (TSH)

### **URINALYSIS: Yes**

- Time schedule for collection of urine:

Male, female satellite group: Fresh urine was collected before administration once at week 6 of administration period.

- Metabolism cages used for collection of urine: No

A urine collector to collect fresh urine samples under ad libitum feeding and drinking conditions.

- How many animals:

At the end of administration period:

Male: 7, 12, 12, and 7 males/dose (0, 20, 100, and 500 mg/kg bw/day)

Females (satellite): 10 females/dose (0 and 500 mg/kg bw/day)

- Parameters checked:

Fresh urine: pH, protein, glucose, ketones, bilirubin, occult blood, urobilinogen

### NEUROBEHAVIOURAL EXAMINATION: Yes

- Time schedule for examinations:

Males and females (satellite): Week 6 of administration period.

Females (mating): The animals were delivered on the day before dissection (4 days after delivery).

- Dose groups that were examined: Autopsy animals after the end of the administration period
- Battery of functions tested:
- 1) Reflex/reactions (Manipulative Test). Visual forelimb placing response, auditory reactivity, tail pinch response, pupillary reflex, aerial righting reaction.
- 2) Measurement of Grip Strength. Grip strength of forelimb and hind limb was measured by MK-380CM (Muromachi kikai Co.,Ltd.).
- 3) Measurement of Spontaneous Motor Activity. Spontaneous motor activity was measured by SCAN ET MV-10 (MELQUEST Ltd.).

Motor activity was measured for 60 min.

## **Oestrous cyclicity (parental animals)**

Vaginal smears were collected from all females except satellites and microscopically examined every day from the day after the start of administration until the day copulation was confirmed.

## Sperm parameters (parental animals)

Parameters examined in all P male parental generations: testes, epididymis ventral prostate, and sem inal vesicle weight, histopathological examinations for testes, epididymis ventral prostate, and sem inal vesicle.

#### Litter observations

PARAMETERS EXAMINED: The following parameters were examined in F1 offspring: Number and sex of pups, stillbirths, live births, postnatal mortality, presence of gross anomalies, and weight gain. GROSS EXAMINATION OF DEAD PUPS: Yes, for external and internal abnormalities.

#### Postmortem examinations (parental animals)

METHOD OF SACRIFICED: All animals were sacrificed by exsanguination under ether anesthesia. SACRIFICE: Males, females (satellite): On next day after the last administration, Maternal animals: on Day 5 of lactation, Females who copulated but did not deliver: The day corresponding to GD 26, Males and females recovery group: on Day 14 of recovery.

**GROSS PATHOLOGY: Yes** 

ORGAN WEIGHT: Yes

: pituitary, thyroids, heart, liver, kidney, thymus, spleen, adrenal gland, testes, epididymides, ventral prostate, seminal vesicles (including coagulating gland), ovaries, uterus, brain, lung

HISTOPATHOLOGY: Yes: brain. pituitary, spinal cord, eye ball, thyroid, parathyroid, heart, nasal cavity, trachea, lung, liver, kidney, thymus, spleen, adrenal glands, stomach, small intestine (including duod enum), large intestine, testis, epididymis, ventral prostate, seminal vesicles (including coagulating gland), ovaries, uterus, vagina, urinary bladder, lymph nodes (axillary, inguinal, etc.), peripheral nerve (sciatic nerve), bone marrows (femur), bone (femur), mammary gland, muscle.

## Postmortem examinations (offspring)

**SACRIFICE** 

- The F1 offsprings were euthanized on PND4 by exsanguination under ether anesthesia. GROSS NECROPSY: Yes
- Gross necropsy consisted of external and internal examinations including the cervical, thoracic, and abdominal viscera.

HISTOPATHOLOGY / ORGAN WEIGTHS

- Not examined.

#### **Statistics**

For copulation index, fertility index, gestation index, urinalysis and histopathological findings, s tatistical difference between each treatment group and the control group was analyzed using by the C hi-square test.

For quantitative data, homogeneity of variance was tested using Bartlett method first. If the variance was homogenous, statistical difference between each treatment group and the control group was analyzed using Dunnett method. If not homogenous, statistical difference between each treatment g roup and the control group was tested using Kurskal-Wallis rank sum test and the significant difference between the medium control and treated groups was analyzed by nonparametric Dunnett multiple comparison test. For comparison of quantitative data between two groups in female satellite animals and male recovery test, homogeneity of variance was analyzed by F-test. Then, if homogenous, student's t-test was applied. If not homogenous, Aspin-Welch's t-test was used.

## **Reproductive indices**

Each parameter was determined by the following equations:

Copulation index (%) = (No. of copulated pairs / No. of mated pairs) × 100

Fertility index (%) = (No. of pregnant females / No. of copulated pairs) × 100

Gestation index (%) = (No. of females with complete parturition / No. of pregnant females)  $\times$  100 Gestation length (days)

Implantation index (%) = (No. of implantations / No. of corpora lutea) × 100

Delivery index (%) = (No. of pups born / No. of implantation)  $\times$  100

Birth index (%) = (No. of live pups on day 0 / No. of implantation) × 100

Live birth index (%) = (No. of live pups on day 0 / No. of pups born)  $\times 100$ 

Sex ratio on pups born = No. of male pups / No. of male and female pups born

Sex ratio on day 4 = No. of male live pups on day 4 / No. of live pups on day 4

| Offspring viability indices Viability index (%) = (No. of live pups on day 4 / No. of live pups on day 0) × 100 |
|-----------------------------------------------------------------------------------------------------------------|
| Results and discussion —                                                                                        |
| Results: P0 (first parental generation) ————————————————————————————————————                                    |
| General toxicity (P0)                                                                                           |
|                                                                                                                 |
| 29                                                                                                              |

## **Clinical signs**

effects observed, treatment-related

## **Description (incidence and severity)**

See 7.5.1 Repeated dose toxicity. 001

## Mortality

mortality observed, non-treatment-related

## **Description (incidence)**

See 7.5.1 Repeated dose toxicity. 001

## Body weight and weight changes

effects observed, treatment-related

## **Description (incidence and severity)**

See 7.5.1 Repeated dose toxicity. 001

## Food consumption and compound intake (if feeding study)

no effects observed

## **Food efficiency**

not examined

## Water consumption and compound intake (if drinking water study)

not examined

## **Ophthalmological findings**

not examined

## **Haematological findings**

not specified

## **Description (incidence and severity)**

See 7.5.1

## Clinical biochemistry findings

not specified

## **Description (incidence and severity)**

See 7.5.1 Repeated dose toxicity. 001

## **Urinalysis findings**

no effects observed

## **Behaviour (functional findings)**

no effects observed

## Immunological findings

not examined

## Organ weight findings including organ / body weight ratios

no effects observed

## **Gross pathological findings**

no effects observed

## **Neuropathological findings**

not examined

## Histopathological findings: non-neoplastic

no effects observed

## Histopathological findings: neoplastic

not examined

# Reproductive function / performance (P0) -

Reproductive function: oestrous cycle

no effects observed

Reproductive function: sperm measures

no effects observed

## Reproductive performance

no effects observed

## Details on results (P0) -

General toxicity: See 7.5.1 Repeated dose toxicity. 001

Reproductive function / performance: There were no effects on reproductive parameters up to 500 mg/kg bw/day.

## Effect levels (P0) —

## **Key result**

true

**Dose descriptor** 

**NOAEL** 

### **Effect level**

500

mg/kg bw/day (actual dose received)

## Based on

test mat.

## Sex

male/female

## **Basis for effect level**

other: No effects on reproduction

## Results: F1 generation

# General toxicity (F1) -

## **Clinical signs**

no effects observed

## Mortality / viability

no mortality observed

## Body weight and weight changes

no effects observed

## **Gross pathological findings**

no effects observed

## Details on results (F1) -

There were no effects on developmental parameters up to 500 mg/kg bw/day.

## Effect levels (F1) —

## Key result

true

## **Dose descriptor**

NOAEL

#### Generation

F1

### **Effect level**

500

mg/kg bw/day (actual dose received)

## Based on

test mat.

#### Sex

male/female

## **Basis for effect level**

other: No effects on development

# Overall reproductive toxicity

### **Key result**

true

### Reproductive effects observed

no

# Any other information on results incl. tables -

Figures and Tables (in English) are available in the following full report of the study. https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9d.pdf

# Applicant's summary and conclusion

## **Conclusions**

In the combined repeated oral dose toxicity study with the reproduction/developmental toxicity scree ning test (OECD TG 422) described above, there were no effects on reproductive and developmental parameters up to 500 mg/kg bw/day. The NOAEL for the rat reproductive/developmental toxicity of 2,4-Dimethylbenzenesulfonic acid was regarded as 500 mg/kg bw/day, the highest dose tested.

## **Executive summary**

In the combined repeated dose and reproductive/developmental screening test (OECD TG422), SD rats were treated orally with the test substance at the doses of 0, 20, 100 and 500 mg/kg bw/day. Males were

dosed for 42 days including a 14 day pre-mating period. Females (12 animals/dose) were dosed for 41-46 days including 14 day pre-mating, mating, and gestation periods and days until day 4 of lactation. In addition, as the satellite study group of females (10 females/group) was dosed 0 and 500 mg/kg/day for 42 days, with 5 animals/group treated with recovery. There were no effects on reproductive and developmental parameters up to 500 mg/kg bw/day. The NOAEL for the rat reproductive/developmental toxicity of 2,4-dimethylbenzenesulfonic acid was regarded as 500 mg/kg bw/day, the highest dose tested.

# References

# **Reference Substances**

# REFERENCE\_SUBSTANCE: m-xylene-4-sulphonic acid

UUID: ECB5-25d98114-4c1a-4381-882e-fa63892577f7

Dossier UUID: Author:

Date: 2007-05-10T18:00:00.000+09:00

Remarks:

## Reference substance name

m-xylene-4-sulphonic acid

## **IUPAC** name

2,4-dimethylbenzenesulfonic acid

## Inventory

## **Inventory number**

## Inventory name

m-xylene-4-sulphonic acid

## Inventory

**EC Inventory** 

## **Inventory number**

201-843-9

## **CAS** number

88-61-9

## Molecular formula

C8H10O3S

## **Description**

### **CAS** number

88-61-9

# **Synonyms**

## **Synonyms**

## Identity

Benzenesulfonic acid, 2,4-dimethyl-

## Identity

Benzenesulfonic acid, 2,4-dimethyl-

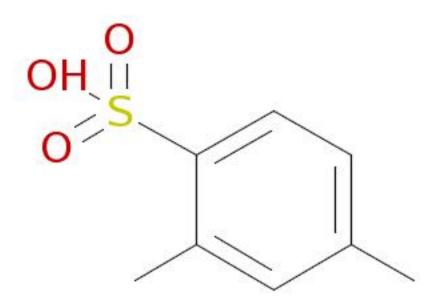
## Molecular and structural information

## Molecular formula

C8H10O3S

## Molecular weight

186.2282


## **SMILES notation**

Cc1ccc(c(C)c1)S(=0)(=0)0

## InChl

InChl=1/C8H10O3S/c1-6-3-4-8(7(2)5-6)12(9,10)11/h3-5H,1-2H3,(H,9,10,11)

## Structural formula



# Related substances

**Group / category information** 

DSL Category: Organics

# **Test Materials**

# TEST\_MATERIAL\_INFORMATION: 2,4-Dimethylbenzenesulfonic acid

**UUID:** 889d6bfe-5432-4110-bc28-9bf04b35ad65

Dossier UUID: Author:

Date: 2021-03-04T09:50:09.000+09:00

Remarks:

### Name

2,4-Dimethylbenzenesulfonic acid

# Literatures

# LITERATURE: Combined repeated dose toxicity study with the reproductive/developmental toxicity screening test of 2,4-Dimethylbenzenesulfonic acid by oral administration in rats

UUID: 5c5e4887-b688-420d-a735-389d5aa77069

Dossier UUID: Author:

Date: 2021-03-04T09:35:01.000+09:00

Remarks:

## **General information**

## **Reference Type**

study report

## Title

Combined repeated dose toxicity study with the reproductive/developmental toxicity screening test of 2,4-Dimethylbenzenesulfonic acid by oral administration in rats

#### **Author**

Ministry of Health, Labour and Welfare (MHLW), Japan

## **Bibliographic source**

available in the web of Japan Existing Chemical Data Base (JECDB) https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9d.pdf

## **Testing facility**

Japan Bioassay Research Center

### Report number

0765

# LITERATURE: In Vitro Chromosomal Aberration Test of on 2,4-Dimethylbenzenesulfonic acid Cultured Chinese Hamster Cells.

UUID: 54541599-236b-4c5c-b2aa-7afdcd5e9032

Dossier UUID: Author:

Date: 2021-03-15T16:17:50.000+09:00

Remarks:

## **General information**

## **Reference Type**

study report

## **Title**

In Vitro Chromosomal Aberration Test of on 2,4-Dimethylbenzenesulfonic acid Cultured Chinese Hamster Cells.

#### Author

Ministry of Health, Labour and Welfare (MHLW), Japan

### Year

2011

## Bibliographic source

Japan Existing Chemical Data Base (JECDB) https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9f.pdf

## **Testing facility**

Japan Bioassay Research Center

### Report number

7416

# LITERATURE: Reverse Mutation Test of 2,4-Dimethylbenzenesulfonic acid on Bacteria.

UUID: 478e3901-a792-4655-941f-4bcb69910f50

Dossier UUID: Author:

Date: 2021-03-10T15:31:49.000+09:00

Remarks:

## **General information**

## **Reference Type**

study report

#### Title

Reverse Mutation Test of 2,4-Dimethylbenzenesulfonic acid on Bacteria.

### **Author**

Ministry of Health, Labour and Welfare (MHLW), Japan

## Year

2011

## **Bibliographic source**

Japan Existing Chemical Data Base (JECDB) https://dra4.nihs.go.jp/mhlw\_data/home/pdf/PDF88-61-9e.pdf

## **Testing facility**

Japan Bioassay Research Center

## Report number

6337

# **Legal Entities**

# **LEGAL\_ENTITY: National Institute of Health Sciences**

UUID: IUC4-b036ff75-0f3c-323b-b200-ed5f46cf5101

Dossier UUID: Author:

Date: 2022-11-07T15:49:29.000+09:00

Remarks:

## **General information** -

## Legal entity name

National Institute of Health Sciences

#### Remarks

Disclaimer: The contents in this document were created based on the MHLW (Ministry of Health, Labour and Welfare) peer reviewed study reports (in Japanese) in JECDB (Japan Existing Chemical Database) at http://dra4.nihs.go.jp/mhlw\_data/jsp/SearchPageENG.jsp. Authorship is in the Division of Risk Assessment, the National Institute of Health Sciences, and the contents do not reflect any official MHLW opinions or any other regulatory policies.

## Address -

### Address 1

Tonomachi 3-25-26

## Address 2

Kawasaki-ku

## Postal code

210-9501

## Town

Kawasaki

## Region / State

Kanagawa

## Country

Japan

JP

## Identifiers -

## Other IT system identifiers

## IT system

LEO

## ID

10767

## IT system

**IUCLID4** 

## ID

16558402024DIV750