

Name: COMPLETE / SUBSTANCE : Tetraphenyltin(IV) / tetraphenylstannane / 595-90-4 Fri, 16 Dec 2022, 16:56:43+0900 /

Legal entity owner: National Institute of Health Sciences

Printing date: 2022-12-16T16:56:43.511+09:00

Table of Contents

0/0	1
National Institute of Health Science	2
Tetraphenyltin(IV)	3
CORE	3
1 General information	3
1.10 Assessment approach (assessment entities)	3
Assessment approach (assessment entities)	3
0ECD	4
D Health Effects	4
67 Repeated dose toxicity: oral	4
Repeated dose toxicity: oral.001	
70 Genetic toxicity in vitro	12
Genetic toxicity in vitro.001	
Genetic toxicity in vitro.002	17
73 Toxicity to reproduction	21
Toxicity to reproduction.001	21
DOMAIN	30
Substance	30
Substance	30
References	31
Reference Substances	31
tetraphenyltin	31
Literatures	33
A combined repeated dose/reproductive developmental toxicity study of	
tetraphenyltin by oral administration in rats.	33
In Vitro Chromosomal Aberration Test of Tetraphenyltin(IV) on Cultured	
Chinese Hamster Cells	34
Reverse Mutation Test of Tetraphenyltin(IV)	35
Legal Entities	
National Institute of Health Sciences	

DOSSIER:

UUID: 0

Dossier UUID:

Author:

Date: 2022-12-16T16:56:43.317+09:00

Remarks:

Dossier header -

Dossier submission type

Name

Complete table of contents

Version

core 7.0

Name (given by user)

Dossier subject -

Dossier subject

Tetraphenyltin(IV) / tetraphenylstannane / 595-90-4

Public name

Submitting legal entity

National Institute of Health Science

Dossier creation date/time

Fri, 16 Dec 2022, 16:56:43+0900

Used in category

LEGAL_ENTITY: National Institute of Health Science

UUID: f51e7b54-9211-4863-90ce-fcf8a155d647

Dossier UUID: Author:

Date: 2022-11-07T16:24:02.822+09:00

Remarks:

General information -

Legal entity name

National Institute of Health Science

Tetraphenyltin(IV)

CORE

General information

Assessment approach (assessment entities)

FIXED_RECORD: Assessment approach

UUID: 8c83d60d-ce74-3df6-8063-99466d912ef4

Dossier UUID: Author:

Date: 2019-03-27T09:53:09.000+09:00

Remarks:

OECD

Health Effects

Repeated dose toxicity: oral

ENDPOINT_STUDY_RECORD: Repeated dose toxicity: oral.001

UUID: 4a06e5fb-bede-4840-a3c1-a41af7a2f975

Dossier UUID: Author:

Date: 2022-12-16T16:56:20.805+09:00

Remarks:

Administrative data

Endpoint

repeated dose toxicity: oral, other

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Toxicity to reproduction / Toxicity to reproduction.001 / Tetraphenyltin(IV) / tetraphenylstannane / 595-90-4

Data source -

Reference

A combined repeated dose/reproductive developmental toxicity study of tetraphenyltin by oral adminis / Ministry of Health, Labor and Welfare, Japan / study report

Data access

data published

Materials and methods -

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)

Deviations

no

GLP compliance

yes

Limit test

no

Test material -

Specific details on test material used for the study

- Name of test material (as cited in study report): Tetraphenyltin
- Analytical purity: 97.9%
- Storage condition of test material: at a cold (temperature 2-6°C) and dark place, with airtight stopper.
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Test animals -

Species

rat

common rodent species

Strain

other: Crl:CD(SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation: male 388 g (357-421 g), female 243 g (213-278 g)
- Housing: Animals were individually housed in bracket-type metallic wire-mesh cages ($265W \times 426D \times 200H$ mm), Dams were bred individually or with individual littermates in polycarbonate cages with flat floors ($265W \times 426D \times 200H$ mm) and standard bedding.
- Diet: Solid feed (MR stock: Nosan Corporation) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation period: 14 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 22±3 (actual temperature: 20.7-24.9°C)
- Humidity (%): 55±10% (actual humidity: 45-63%)
- Air changes (per hr): >10
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 7:00~19:00)

Administration / exposure

Route of administration

oral: gavage

Vehicle

olive oil

Details on oral exposure

- Amount of vehicle (if gavage): 5 mL/kg
- Dosing volume: 5 mL/kg

Analytical verification of doses or concentrations

yes

Duration of treatment / exposure

(P) Males: 42 days including 14 days pre-mating

(P)Females: 42-54 days including 14 days pre-mating, mating and gestation periods and the days until

day 4 of lactation

Female (no mating, satellite group): 42 days

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

_	
Dose / conc.	
0	mg/kg bw/day (actual dose received)
Dose / conc.	
4	mg/kg bw/day (actual dose received)
Dose / conc.	
20	mg/kg bw/day (actual dose received)
Dose / conc.	
100	mg/kg bw/day (actual dose received)
Dose / conc.	
2000, 00	
500	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

Main group:12 animals/sex/dose

Satellite (Recovery) group: 5 males/dose and 5 females/dose (0 and 500 mg/kg bw/day)

Control animals

yes, concurrent vehicle

Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the highest dose of 500 mg/kg bw/day was selected as an expected obvious toxic dose, and the lowest dose of 4 mg/kg bw/day was selected as an expected no toxic dose. The middle dose levels of 20 and 100 mg/kg bw/day were selected.
- Rationale for animal assignment (if not random): Body weight-balanced randomization

[14-day preliminary study]

Study 1:

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0 (olive oil), 50, 100, 200, 500 or 100 0 mg/kg bw/day). At 50 mg/kg bw/day or more, treatment rerated effects were observed. High value of ALT were observed in males 1000 mg/kg bw/day.

Study 2:

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0 (olive oil), 1.5, 3, 6, 12.5, 25 or 50 mg/kg bw/day). Increase in relative liver weights were observed in males at 3 mg/kg bw/day, females at 6 mg/kg bw/day and 25 mg/kg bw/day or more.

Examinations

Observations and examinations performed and frequency

CAGE SIDE OBSERVATIONS: Yes

- Time schedule: 3 times/day (am: before and after administration; pm) during the administration period. 2 times/day (am and pm) during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule: Once before the start of administration, and once every week by the end of the study period.

BODY WEIGHT: Yes

- Time schedule for examinations:

Males were weighed on Day 1, 7, 14, 21, 28, 35, and 42 of administration, and weighed on Day 7 and 14 of recovery.

Female satellite groups were weighted same frequencies to male recovery groups.

Females in the main groups were weighed on Day 1, 7 and 14 of administration and copulated females were weighed on Day 0, 7, 14 and 20 of gestation, and days 0 and 4 of lactation.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

- Food consumption: Yes

Measurement of food consumption was conducted on all animals at the following frequencies: Males in the main and recovery groups; on Day 1, 7, 14, 21, 28, 35, and 41 of administration, and on Day 7 and 13 of recovery.

Female satellite groups were weighted same frequencies to male recovery groups.

Females in the main group; on Day 1, 7 and 14 of administration and copulated females were weighed on Day 0, 7, 14 and 20 of gestation, and days 0 and 3 of lactation.

OPHTHALMOSCOPIC EXAMINATION: No

HAEMATOLOGY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Anaesthetic used for blood collection: ether

- Animals fasted: Yes
- How many animals: 5 animals/sex/group
- Parameters examined included RBC, hemoglobin, hematocrit, MCV, MCH, MCHC, platelet, ret iculocyte, PT, APTT, WBC and differential WBC.

CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Animals fasted: Yes
- How many animals: 5 animals/sex/group
- Parameters examined included total protein, albumin, A/G ratio, total bilirubin, glucose, total cho lesterol, triglyceride, phospholipid, AST, ALT, LDH, ChE, ALP, gamma-GTP, BUN, creatinine, Na, K, Cl, Ca and IP.

URINALYSIS OF MALES: Yes

- Time schedule for collection of urine (male only): On Day 37 of administration, and on Day 9 of rec overy.
- Metabolism cages used for collection of urine: Yes
- How many animals: 5 animals/group
- Parameters examined included color, cloudy, urine volume, specific gravity, pH, protein, glucose, keto ne body, bilirubin, occult blood and urobilinogen.

NEUROBEHAVIOURAL EXAMINATION: Yes

- Time schedule for examinations: On week 6 of the administration period, and on week 2 of the recovery period
- Dose groups that were examined: All dose groups (5 animals/sex/group)
- Battery of functions tested: sensory activity (hearing reaction, eye sight reaction, sense of touch reaction, pain reaction, pupil reflex, righting reflex), grip strength, motor activity

Sacrifice and pathology

GROSS PATHOLOGY: Yes

ORGAN WEIBHT: Yes [brain, thymus, heart, liver, kidney, adrenal gland, spleen, seminal vesicle, testis, epididymis, pituitary, thyroid]

HISTOPATHOLOGY: Yes, [brain, pituitary, spinal cord, thyroid, parathyroid, heart, thymus, trachea, lung, liver, kidney, adrenal, spleen, stomach, small intestine, large intestine, sciatic nerve, bone, bone marro w, lymph nodes (mesenteric and cervical lymph nodes), urinary bladder, testis, seminal vesicle, pros tate, epididymis, mammary gland, ovary and uterus.]

Statistics

As for parametric data (grip strength, locomotor activity, body weight, body weight gain, food consumption, hematology and clinical chemistry data, organ weights, quantitative urinalysis data, number of corpora lutea, number of implantation sites, number of pups born, number of pups alive, number of stillborn), the values of means and standard deviations were calculated per group. When more than three groups exist in the test group, Bartlett test for variance was done, and if the variance was ho mogenous, ANOVA was applied. If the variance was not homogenous or data was non-parametric (differential WBC percentage, qualitative urinalysis data, stages of spermatogenesis, length of the estrous cycle, implantation index, delivery index, live birth index, viability index,), Kruskal-Wallis rank s um test was used. Consequently, if the result was significant, Dunnett multiple comparison or Dunnet typed method was used for detection of statistical significance against control group. When the number of the test group was two, F-test was used as for parametric data.

Then, student's t-test or Aspin-Welch's t-test was applied depending on the result of homogeneity of variance. While, as for non-parametric data, Man-Whitney's U-test was applied. Furthermore, as fo r categorized data (incidence of abnormal findings in clinical observation, detailed observation, se

nsory functional examination, necropsy and histopathology, copulation index, fertility index, gestation index), Fischer's exact test was used. In the histopathological examination findings, Mann-Whitney's U test was used for graded data, and chi-squared test was used for sex ratio of pups. In any tests, level of significance was set at 5%.

Results and discussion

Results of examinations -

Clinical signs

no effects observed

Mortality

no mortality observed

Body weight and weight changes

no effects observed

Food consumption and compound intake (if feeding study)

no effects observed

Food efficiency

not examined

Water consumption and compound intake (if drinking water study)

not examined

Ophthalmological findings

not examined

Haematological findings

no effects observed

Clinical biochemistry findings

no effects observed

Urinalysis findings

no effects observed

Behaviour (functional findings)

no effects observed

Organ weight findings including organ / body weight ratios

no effects observed

Gross pathological findings

no effects observed

Histopathological findings: non-neoplastic

no effects observed

Histopathological findings: neoplastic

not examined

Details on results

CLINICAL SIGNS AND MORTALITY:

Mortality: There was no death.

Clinical signs: There were no effects related to the test substance.

DETAILED CLINICAL OBSERVATIONS, MANIPULATIVE TEST, GRIP STRENGTH TEST AND LOCO MOTOR ACTIVITY MEASUREMENT: There were no changes related to the test substance.

BODY WEIGHT:

There were no changes related to the test substance in any groups at the dosing and recovery p eriods.

FOOD CONSUMPTION: There were no changes related to the test substance in any groups at the dosing and recovery periods.

URINALYSIS: There were no changes related to the test substance in any groups at the dosing and recovery periods.

HAEMATOLOGY:

There were no changes related to the test substance in any groups at the end of dosing and recovery periods.

CLINICAL CHEMISTRY:

There were no changes related to the test substance in any groups at the end of dosing and recovery periods.

URINALYSES OF MALES: There were no changes related to the test substance in any groups at the dosing and recovery periods.

ORGAN WEIGHTS:

There were no changes related to the test substance in any groups at the end of dosing and recovery periods.

GROSS PATHOLOGY: There were no changes related to the test substance in any groups at the end of dosing and recovery periods.

HISTOPATHOLOGY: NON-NEOPLASTIC:

There were no changes related to the test substance in any groups at the end of dosing and recovery periods.

Effect levels

Key result

true

Dose descriptor

NOAEL

Effect level

500

mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

other: There were no effects related to the test substance.

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

Applicant's summary and conclusion

Executive summary

The combination of a study of repeated-oral-dose toxicity and a reproduction/developmental toxicity screening test was performed in accordance with OECD TG 422. Tetraphenyltin (IV) was administered to male and female rats (12 animals/sex/dose) at 0 (vehicle: olive oil), 4, 20, 100, and 500 mg/kg bw/day. The males were dosed for 42 days, including a 14-day pre-mating period and a subsequent mating period. The females were dosed for 42–54 days, including 14-day pre-mating, mating, and gestation periods and until lactation day 4. Of the 12 males in the control and 500 mg/kg bw/day groups, 5 were treated as a recovery group. Additionally, five females per dose were administered the test substance at 0 and 500 mg/kg bw/day for 42 days without mating; they were examined after a 14-day recovery period (satellite group).

No adverse effects were observed in clinical characteristics, FOB, body weight, food consumption, urinalysis, hematology, clinical biochemistry, organ weight, or pathology after the administration and recovery periods for any of the treated groups. In a 14-day preliminary study of tetraphenyltin (IV) in rats, relative liver weights were found to increase by 3 to 1,000 mg/kg bw/day in males and by 6 to 1,000 mg/kg bw/day in females. For this reason, the largest dose tested in this main study was expected to cause overt toxicity. No clear reason was adduced why no adverse effects on the liver were observed in this study, but age at necropsy and duration of administration might each have affected the response. These data indicate that the NOAEL of repeated-dose toxicity for tetraphenyltin (IV) should be estimated to be 500 mg/kg bw/day (the highest dose tested).

Genetic toxicity in vitro

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.001

UUID: 185693f0-194e-44c0-b530-3d7fd8644326

Dossier UUID: Author:

Date: 2019-09-03T16:11:29.000+09:00

Remarks:

Administrative data

Endpoint

in vitro gene mutation study in bacteria

Type of information

experimental study

Adequacy of study

key study

Robust study summary

true

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source -

Reference

Reverse Mutation Test of Tetraphenyltin(IV) / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 471 (Bacterial Reverse Mutation Assay)

in vitro gene mutation study in bacteria

GLP compliance

yes

Test material

Specific details on test material used for the study

- Lot No.: EWJ4190
- Purity: 99%
- Solubility: insoluble in water, DMSO, acetone, N,N-dimethylformamide, 1,4-dioxane, and tetrahy drofuran
- Physical state: white powder
- Storage condition of test material: room temperature (16-28 degree C)

Method -

Species / strain

Species / strain / cell type

S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2 bacteria

Metabolic activation

with and without

Metabolic activation system

S9 mix: Rat liver, induced with phenobarbital and 5,6-benzoflavone

Test concentrations with justification for top dose

Dosage of each strain with or without S9 +/-S9 mix: 0, 19.5, 39.1, 78.1, 156, 313 µg /plate

Maximum concentration was established based on the result of the preliminary test at concentration up to 5000 ug/plate. In this test, growth inhibition was not observed, but precipitation was observed at $313-5000 \mu g/plate$ for all strains with and without S9 mix.

Vehicle / solvent

Water (suspended)

Controls

Untreated negative controls

nc

Negative solvent / vehicle controls

yes

True negative controls

no

Positive controls

ves

Positive control substance

sodium azide

- S9 mix (TA 1535)

benzo(a)pyrene

+S9 mix (TA100, TA98, TA1537)

other: see Remarks

Remarks

without S9 mix:2-(2-Furyl)-3-(5-nitro -2-furyl)acrylamide (TA100, TA98, WP2uvrA), without S9 mix: 2-Methoxy-6-chloro-9-[3-(2-chloroethyl) aminopropylamino]acridine-2HCl (TA1537) with S9 mix: 2-aminoanthracene (TA 1535, WP2uvrA)

Details on test system and experimental conditions

METHOD OF APPLICATION: Preincubation DURATION- Preincubation period: 20 min at 37°C

- Exposure duration:48 hrs NUMBER OF PLATES: 3 NUMBER OF REPLICATIONS: 2

DETERMINATION OF CYTOTOXICITY- Method: other: growth inhibition

Evaluation criteria

A chemical was judged to be mutagenic when the mean number of revertant colonies per plate increased more than twice that of the negative control and when the dose-related or reproducible in crease was observed.

Statistics

not used

Results and discussion

Test results

Key result

true

Species / strain

S. typhimurium TA 1535 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

Vehicle controls validity

valid

Positive controls validity

valid

Key result

true

Species / strain

S. typhimurium TA 1537

bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

Vehicle controls validity

valid

Positive controls validity

valid

Key result

true

Species / strain

S. typhimurium TA 98 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations

Vehicle controls validity

valid

Positive controls validity

valid

Key result

true

Species / strain

S. typhimurium TA 100 bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity nor precipitates, but tested up to recommended limit concentrations Precipitation was observed at 313 µg /plate.

Vehicle controls validity

valid

Positive controls validity

valid

Key result

true

Species / strain

E. coli WP2 uvr A pKM 101

bacteria

Metabolic activation

with and without

Genotoxicity

negative

Cytotoxicity / choice of top concentrations

no cytotoxicity, but tested up to precipitating concentrations

Vehicle controls validity

valid

Positive controls validity

valid

Any other information on results incl. tables

Figures and Tables (in Japanese) are available in the following full report of the study. http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF595 -90 -4e.pdf

Tables (in English) are attachted to this document. Please download the export file to see the Tables.

Applicant's summary and conclusion

Conclusions

With metabolic activation: Negative Without metabolic activation: Negative

Executive summary

In a bacterial reverse mutation assay using S. typhimuriumTA100, TA1535, TA98, and TA1537, and E. coli WP2uvrA/pKM101 (OECD TG 471), negative results were obtained for tetraphenyltin(IV) with or without metabolic activation.

ENDPOINT_STUDY_RECORD: Genetic toxicity in vitro.002

UUID: c4b9729b-d2a6-4818-baa4-c844c57812c2

Dossier UUID: Author:

Date: 2022-12-16T16:52:12.805+09:00

Remarks:

Administrative data

Endpoint

in vitro cytogenicity / chromosome aberration study in mammalian cells

Type of information

experimental study

Adequacy of study

key study

Robust study summary

true

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Data source

Reference

In Vitro Chromosomal Aberration Test of Tetraphenyltin(IV) on Cultured Chinese Hamster Cells / Ministry of Health, Labour and Welfare (MHLW), Japan / study report

Data access

data published

Materials and methods

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test) in vitro cytogenicity / chromosome aberration study in mammalian cells

GLP compliance

yes

Test material

Specific details on test material used for the study

- Lot No.: EWJ4190
- Purity: 99%
- Solubility: insoluble in water, suspend in DMSO
- Physical state: white powder
- Storage condition of test material: room temperature (15-24 degree C)

Method

Species / strain

Species / strain / cell type

other:

Details on mammalian cell type (if applicable)

Chinese hamster lung(CHL/IU) cell

Metabolic activation

with and without

Metabolic activation system

S9 mix: Rat liver, induced with phenobarbital and 5,6- benzoflavone

Test concentrations with justification for top dose

Short-term treatment(+S9 mix): 0, 134.4, 268.8, 537.5, 1075, 2150 μ g/mL Confirmation test: 1200, 1400, 1600, 1800, 2000 μ g/mL Short-term treatment(-S9 mix): 0, 16.8, 33.59, 67.19, 134.4 μ g/mL Confirmation test:80, 90, 100, 110, 120 μ g/mL

Cell-growth inhibition test was conducted up to the limited concentration of 4300 μ g/mL (10 mM) Cell growth inhibition (>50%) was observed for short-term treatment at 1075 μ g/mL (+S9 mix) and 134.4 μ g/mL (-S9mix), and continuous treatment at 67.19 μ g/mL (24h) and 33.59 μ g/mL (48h).

Vehicle / solvent

DMSO

Controls

Untreated negative controls

no

Negative solvent / vehicle controls

yes

True negative controls

no

Positive controls

yes

Positive control substance

cyclophosphamide (with S9 mix) mitomycin C (without S9 mix)

Details on test system and experimental conditions

METHOD OF APPLICATION: Exposure duration: [short-term treatment]:6 h + 18 h, [continuous t

reatment]: 24h and 48h

NUMBER OF CELLS EVALUATED: 200 cells /concentration (100 cells/plate x 2)

Plates/test: 2

Evaluation criteria

For the evaluation of the frequencies of structural aberrations and of polyploidy induced, the following criteria were employed. Appearance incidence of cell with chromosomal aberrations: Negative(-): less than 5%, Equivocal(±): 5% or more and less than 10%, Positive(+): 10% or more

Statistics

not used

Results and discussion

Test results

Key result

true

Species / strain

other: Chinese hamster lung(CHL/IU) cells

Metabolic activation

with and without

Genotoxicity

positive

Cytotoxicity / choice of top concentrations

cytotoxicity at 2000 µg/mL and higher with S9 mix, at 134.4 µg/mL without S9 mix

Vehicle controls validity

valid

Positive controls validity

valid

Additional information on results

In the confirmation tests, Tetraphenyltin(IV) induced structural aberrations with and without S9 mix. Incidence of structural aberrations were 2.0%, 3.5%, 17.5%, and 52.5 % at 1200, 1400, 1600, and 1800 μ g/mL with S9 mix, and 0.5%, 1.0%, 0.5%, 6.5%, and 11.0% at 80, 90, 100, 110, and 120 μ g/mL without S9mix. Polyploidy was not observed in any test conditions. Positive and vehicle control groups were valid.

Any other information on results incl. tables

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF595-90-4f.pdf

Applicant's summary and conclusion

Conclusions

Tetraphenyltin(IV) induced structural aberrations with and without S9 mix

Executive summary

In an in vitro chromosomal aberration test using CHL/IU cells (OECD TG 473), positive results were obtained with or without metabolic activation.

Toxicity to reproduction

ENDPOINT_STUDY_RECORD: Toxicity to reproduction.001

UUID: e2e5b6da-25b9-460d-a293-2213b468e32f

Dossier UUID: Author:

Date: 2022-12-16T16:53:52.724+09:00

Remarks:

Administrative data

Endpoint

reproductive toxicity, other A combined repeated dose/reproductive developmental toxicity study

Type of information

experimental study

Adequacy of study

key study

Robust study summary

false

Used for classification

false

Used for SDS

false

Reliability

1 (reliable without restriction)

Rationale for reliability incl. deficiencies

guideline study Reliability 1

Cross-reference

Reason / purpose for cross-reference

reference to same study

Related information

OECD / Repeated dose toxicity: oral / Repeated dose toxicity: oral.001 / Tetraphenyltin(IV) / tetraphenylstannane / 595-90-4

Data source -

Reference

A combined repeated dose/reproductive developmental toxicity study of tetraphenyltin by oral adminis / Ministry of Health, Labor and Welfare, Japan / study report

Data access

data published

Materials and methods -

Test guideline

Qualifier

according to guideline

Guideline

OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)

Deviations

no

GLP compliance

yes

Limit test

no

Test material

Specific details on test material used for the study

- Name of test material (as cited in study report): Tetraphenyltin
- Analytical purity: 97.9%
- Storage condition of test material: at a cold (temperature 2-6°C) and dark place, with airtight stopper.
- Stability under test conditions: The stability of test material was identified by analysis of the remainder.

Test animals

Species

rat

Strain

other: Crl:CD(SD)

Sex

male/female

Details on test animals or test system and environmental conditions

TEST ANIMALS

- Source: Charles River Japan, Inc., Atsugi Breeding Center.
- Age at study initiation: 10 weeks old
- Weight at study initiation: male 388 g (357-421 g), female 243 g (213-278 g)
- Housing: Animals were individually housed in bracket-type metallic wire-mesh cages ($265W \times 426D \times 200H$ mm), Dams were bred individually or with individual littermates in polycarbonate cages with flat floors ($265W \times 426D \times 200H$ mm) and standard bedding.
- Diet: Solid feed (MR stock: Nosan Corporation) was given ad libitum.
- Water: Tap water was given ad libitum.
- Acclimation period: 12 days

ENVIRONMENTAL CONDITIONS

- Temperature (°C): 22±3 (actual temperature: 20.7-24.9°C)
- Humidity (%): 55±10% (actual humidity: 45-63%)
- Air changes (per hr): >10
- Photoperiod (hrs dark / hrs light): 12 hr dark/12 hr light (light: 7:00~19:00)

Administration / exposure

Route of administration

oral: gavage

Vehicle

olive oil

Details on exposure

- Amount of vehicle (if gavage): 5 mL/kg

- Dosing volume: 5 mL/kg

Analytical verification of doses or concentrations

yes

Duration of treatment / exposure

(P) Males: 42 days including 14 days pre-mating

(P)Females: 42-54 days including 14 days premating, mating and gestation periods and the days until

day 4 of lactation

Female (no mating, satellite group): 42 days

Frequency of treatment

Once/day, 7 days/week

Doses / concentrations

Dose / conc.	mg/kg bw/day (actual dose received)
Dose / conc.	mg/kg bw/day (actual dose received)
Dose / conc.	
Dose / conc.	mg/kg bw/day (actual dose received)
100	mg/kg bw/day (actual dose received)
Dose / conc. 500	mg/kg bw/day (actual dose received)

No. of animals per sex per dose

Main group:12 animals/sex/dose

Satellite (Recovery) group: 5 males/dose and 5 females/dose (0 and 500 mg/kg bw/day)

Control animals

yes, concurrent vehicle

Details on study design

- Dose selection rationale: Based on the results of a 14-day preliminary study, the highest dose of 500 mg/kg bw/day was selected as an expected obvious toxic dose, and the lowest dose of 4 mg/kg bw/day was selected as an expected no toxic dose. The middle dose levels of 20 and 100 mg/kg bw/day were selected.
- Rationale for animal assignment (if not random): Body weight-balanced randomization

[14-day preliminary study]

Study 1:

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0 (olive oil), 50, 100, 200, 500 or 100 0 mg/kg bw/day). At 50 mg/kg bw/day or more, treatment rerated effects were observed. High value of ALT were observed in males 1000 mg/kg bw/day.

Study 2:

A 14-day repeated dose oral toxicity test (Crl:CD(SD) rats, doses: 0 (olive oil), 1.5, 3, 6, 12.5, 25 or 50 mg/kg bw/day). Increase in relative liver weights were observed in males at 3 mg/kg bw/day, females at 6 mg/kg bw/day and 25 mg/kg bw/day or more.

Examinations

Parental animals: Observations and examinations

CAGE SIDE OBSERVATIONS: Yes

- Time schedule: 3 times/day (am: before and after administration; pm) during the administration period. 2 rimes/day (am and pm) during the recovery period.

DETAILED CLINICAL OBSERVATIONS: Yes

- Time schedule: Once before the start of administration, and once every week by the end of the study period.

BODY WEIGHT: Yes

- Time schedule for examinations:

Males were weighed on Day 1, 7, 14, 21, 28, 35, and 42 of administration, and weighed on Day 7 and 14 of recovery.

Female satellite groups were weighted same frequencies to male recovery groups.

Females in the main groups were weighed on Day 1, 7 and 14 of administration and copulated females were weighed on Day 0, 7, 14 and 20 of gestation, and days 0 and 4 of lactation.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):

- Food consumption: Yes

Measurement of food consumption was conducted on all animals at the following frequencies: Males in the main and recovery groups; on Day 1, 7, 14, 21, 28, 35, and 41 of administration, and on Day 7 and 13 of recovery.

Female satellite groups were weighted same frequencies to male recovery groups.

Females in the main group; on Day 1, 7 and 14 of administration and copulated females were weighed on Day 0, 7, 14 and 20 of gestation, and days 0 and 3 of lactation.

OPHTHALMOSCOPIC EXAMINATION: No

HAEMATOLOGY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Anaesthetic used for blood collection: ether

- Animals fasted: Yes
- How many animals: 5 animals/sex/group
- Parameters examined included RBC, hemoglobin, hematocrit, MCV, MCH, MCHC, platelet, ret iculocyte, PT, APTT, WBC and differential WBC.

CLINICAL CHEMISTRY: Yes

- Time schedule for collection of blood: At the end of administration period, or at the end of recovery period in both sexes
- Animals fasted: Yes
- How many animals: 5 animals/sex/group
- Parameters examined included total protein, albumin, A/G ratio, total bilirubin, glucose, total cho lesterol, triglyceride, phospholipid, AST, ALT, LDH, ChE, ALP, gamma-GTP, BUN, creatinine, Na, K, Cl, Ca and IP.

URINALYSIS OF MALES: Yes

- Time schedule for collection of urine (male only): On Day 37 of administration, and on Day 9 of rec overy.
- Metabolism cages used for collection of urine: Yes
- How many animals: 5 animals/group
- Parameters examined included color, cloudy, urine volume, specific gravity, pH, protein, glucose, keto ne body, bilirubin, occult blood and urobilinogen.

NEUROBEHAVIOURAL EXAMINATION: Yes

- Time schedule for examinations: On week 6 of the administration period, and on week 2 of the recovery period
- Dose groups that were examined: All dose groups (5 animals/sex/group)
- Battery of functions tested: sensory activity (hearing reaction, eye sight reaction, sense of touch reaction, pain reaction, pupil reflex, righting reflex), grip strength, motor activity

Oestrous cyclicity (parental animals)

Vaginal smears were collected from all females in the main groups and microscopically examined every day from the day after the start of administration until the day copulation was confirmed.

Sperm parameters (parental animals)

Parameters examined in all P male parental generations: testis weight, epididymis weight, histopatho logical examinations for testes, epididymides, seminal vesicle including coagulating gland and ventral prostate.

Litter observations

PARAMETERS EXAMINED: The following parameters were examined in F1 offspring: number and sex of pups, stillbirths, live births, postnatal mortality, presence of gross anomalies, weight gain, physical or behavioral abnormalities.

Postmortem examinations (parental animals)

METHOD OF SACRIFICED: All animals were sacrificed by exsanguination under ether anesthesia.

SACRIFICE: Male animals: On Day 42, Maternal animals: on Day 5 of lactation, and Male recovery and female satellite animals: on next Day 14 of recovery.

GROSS PATHOLOGY: Yes

ORGAN WEIBHT: Yes [brain, thymus, heart, liver, kidney, adrenal gland, spleen, seminal vesicle, testis, epididymis, pituitary, thyroid]

HISTOPATHOLOGY: Yes, [brain, pituitary, spinal cord, thyroid, parathyroid, heart, thymus, trachea, lung, liver, kidney, adrenal, spleen, stomach, small intestine, large intestine, sciatic nerve, bone, bone marrow, lymph nodes (mesenteric and cervical lymph nodes), urinary bladder, testis, seminal vesicle, prostate, epididymis, mammary gland, ovary and uterus.]

Postmortem examinations (offspring)

SACRIFICE

- The F1 offspring were sacrificed at 4 days of age.

GROSS NECROPSY

- Gross necropsy consisted of external and internal examinations including the cervical, thoracic, and abdominal viscera.

HISTOPATHOLOGY / ORGAN WEIGTHS

- Not examined.

Statistics

As for parametric data (grip strength, locomotor activity, body weight, body weight gain, food consumption, hematology and clinical chemistry data, organ weights, quantitative urinalysis data, number of corpora lutea, number of implantation sites, number of pups born, number of pups alive, number of stillborn), the values of means and standard deviations were calculated per group. When more than three groups exist in the test group, Bartlett test for variance was done, and if the variance was ho mogenous, ANOVA was applied. If the variance was not homogenous or data was non-parametric (differential WBC percentage, qualitative urinalysis data, stages of spermatogenesis, length of the estrous cycle, implantation index, delivery index, live birth index, viability index,), Kruskal-Wallis rank s um test was used. Consequently, if the result was significant, Dunnett multiple comparison or Dunnet typed method was used for detection of statistical significance against control group. When the number of the test group was two, F-test was used as for parametric data.

Then, student's t-test or Aspin-Welch's t-test was applied depending on the result of homogeneity of variance. While, as for non-parametric data, Man-Whitney's U-test was applied. Furthermore, as fo r categorized data (incidence of abnormal findings in clinical observation, detailed observation, se nsory functional examination, necropsy and histopathology, copulation index, fertility index, gestation index), Fischer's exact test was used. In the histopathological examination findings, Mann-Whitney's U test was used for graded data, and chi-squared test was used for sex ratio of pups. In any tests, level of significance was set at 5%.

Reproductive indices

Estrous cycle: Mean days from metestrus I (III) to next III.

Copulation index (%) = (No. of pairs with successful copulation/No. of pairs mated) \times 100 Fertility index (%) = (No. of pregnant females/No. of pairs with successful copulation) \times 100 Gestation index (%) = (No. of females with live pups/No. of pregnant females) \times 100 Implantation index (%) = (No. of implantation sites/No. of corpora lutea) \times 100 Delivery index (%) = (No. of pups born/No. of implantation sites) \times 100 Live birth index (%) = (No. of live pups on day 0/No. of pups born) \times 100 Sex ratio =Total number of male pups/Total number of female pups

	_				
~11	prina				:
l ITTC	nrına	via	niiitv	ına	פסחו

Viability index (%) = (No. of live pups on day 4/No. of live pups on day $0) \times 100$

Results and discussion —
Trecurs and discussion
Results: P0 (first parental generation) ————————————————————————————————————
General toxicity (P0)
Clinical signs no effects observed

Mortality

no mortality observed

Body weight and weight changes

no effects observed

Food consumption and compound intake (if feeding study)

no effects observed

Food efficiency

not examined

Water consumption and compound intake (if drinking water study)

not examined

Ophthalmological findings

not examined

Haematological findings

no effects observed

Clinical biochemistry findings

no effects observed

Urinalysis findings

no effects observed

Behaviour (functional findings)

no effects observed

Immunological findings

not examined

Organ weight findings including organ / body weight ratios

no effects observed

Gross pathological findings

no effects observed

Neuropathological findings

not examined

Histopathological findings: non-neoplastic

no effects observed

Histopathological findings: neoplastic

not examined

Reproductive function / performance (P0)

Reproductive function: oestrous cycle

no effects observed

Reproductive function: sperm measures

no effects observed

Reproductive performance

no effects observed

Effect levels (P0) -

Key result

true

Dose descriptor

NOAEL

Effect level

500 mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

other: No effects on reproduction

Results: F1 generation -

General toxicity (F1) -

Clinical signs

no effects observed

Mortality / viability

no mortality observed

Body weight and weight changes

no effects observed

Gross pathological findings

no effects observed

Effect levels (F1) -

Key result

true

Dose descriptor

NOAEL

Generation

F1

Effect level

500 mg/kg bw/day (actual dose received)

Based on

test mat.

Sex

male/female

Basis for effect level

other: No effects on development

Any other information on results incl. tables -

Figures and Tables (in English) are available in the following full report of the study.

http://dra4.nihs.go.jp/mhlw_data/home/pdf/PDF595-90-4d.pdf

Applicant's summary and conclusion

Executive summary

In the above-described OECD TG 422 study, no effects were observed for reproduction or development. The NOAEL for rat reproduction/developmental toxicity of tetraphenyltin was estimated to be 500 mg/kg bw/day (the highest dose tested).

DOMAIN

Substance

SUBSTANCE: Tetraphenyltin(IV)

UUID: 2bcc0ba6-3b8c-49ce-98d1-aec95545fade

Dossier UUID: Author:

Date: 2022-12-16T16:56:31.588+09:00

Remarks:

Substance name

Tetraphenyltin(IV)

Legal entity

National Institute of Health Sciences / Kawasaki / Japan

Identification of substance

Reference substance

tetraphenyltin / tetraphenylstannane / 595-90-4 / 209-872-9

EC number EC name
209-872-9 EC Inventory
CAS number CAS name

595-90-4 **IUPAC name**

tetraphenylstannane

Role in the supply chain

Manufacturer

false

Importer

false

Only representative

false

Downstream user

false

References

Reference Substances

REFERENCE_SUBSTANCE: tetraphenyltin

UUID: ECB5-45d3e092-7d22-496f-9a88-14707a9fbb48

Dossier UUID: Author:

Date: 2007-05-10T18:00:00.000+09:00

Remarks:

Reference substance name

tetraphenyltin

IUPAC name

tetraphenylstannane

Inventory

Inventory number

Inventory name

tetraphenyltin

Inventory

EC Inventory

Inventory number

209-872-9

CAS number

595-90-4

Molecular formula

C24H20Sn

Description

CAS number

595-90-4

Synonyms

Synonyms

Identity

Stannane, tetraphenyl-

Identity

Stannane, tetraphenyl-

Identity

Stannane, tetraphenyl-

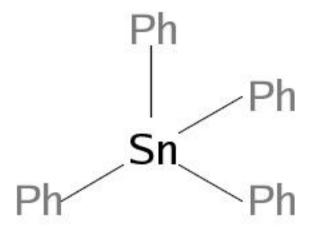
Molecular and structural information -

Molecular formula

C24H20Sn

Molecular weight

427.1256


SMILES notation

c1ccc(cc1)[Sn](c2cccc2)(c3ccccc3)c4cccc4

InChl

InChI=1/4C6H5.Sn/c4*1-2-4-6-5-3-1;/h4*1-5H;/rC24H20Sn/c1-5-13-21(14-6-1)25(22-15-7-2-8-16-22,23-17-9-3-10-18-23)24-19-11-4-12-20-24/h1-20H

Structural formula

Related substances -

Group / category information

DSL Category: Organometallics USEPA Category: Organotins

Literatures

LITERATURE: A combined repeated dose/reproductive developmental toxicity study of tetraphenyltin by oral administration in rats.

UUID: 1af8d23f-8a61-4114-8149-fa5d07a694a6

Dossier UUID: Author:

Date: 2019-03-22T10:28:19.000+09:00

Remarks:

General information

Reference Type

study report

Title

A combined repeated dose/reproductive developmental toxicity study of tetraphenyltin by oral administration in rats.

Author

Ministry of Health, Labor and Welfare, Japan

Bibliographic source

Japan Existing Chemical Data Base (JCDB)

Testing facility

Research institute for animal science in biochemistry and toxicology (RIAS)

Report number

07-110

LITERATURE: In Vitro Chromosomal Aberration Test of Tetraphenyltin(IV) on Cultured Chinese Hamster Cells

UUID: 878c6213-6342-4ca1-99a3-7563daf9e0ca

Dossier UUID: Author:

Date: 2019-02-15T15:12:31.000+09:00

Remarks:

General information

Reference Type

study report

Title

In Vitro Chromosomal Aberration Test of Tetraphenyltin(IV) on Cultured Chinese Hamster Cells

Author

Ministry of Health, Labour and Welfare (MHLW), Japan

Bibliographic source

http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp

Testing facility

BoZo Research Center

LITERATURE: Reverse Mutation Test of Tetraphenyltin(IV)

UUID: 61c00801-5ba2-4de0-a22c-287d1168673f

Dossier UUID: Author:

Date: 2019-02-15T14:51:16.000+09:00

Remarks:

General information

Reference Type

study report

Title

Reverse Mutation Test of Tetraphenyltin(IV)

Author

Ministry of Health, Labour and Welfare (MHLW), Japan

Bibliographic source

http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp

Testing facility

BoZo Research Center

Legal Entities

LEGAL_ENTITY: National Institute of Health Sciences

UUID: IUC4-b036ff75-0f3c-323b-b200-ed5f46cf5101

Dossier UUID: Author:

Date: 2022-11-07T15:49:29.000+09:00

Remarks:

General information -

Legal entity name

National Institute of Health Sciences

Remarks

Disclaimer: The contents in this document were created based on the MHLW (Ministry of Health, Labour and Welfare) peer reviewed study reports (in Japanese) in JECDB (Japan Existing Chemical Database) at http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp. Authorship is in the Division of Risk Assessment, the National Institute of Health Sciences, and the contents do not reflect any official MHLW opinions or any other regulatory policies.

Address -

Address 1

Tonomachi 3-25-26

Address 2

Kawasaki-ku

Postal code

210-9501

Town

Kawasaki

Region / State

Kanagawa

Country

Japan

JP

Identifiers -

Other IT system identifiers

IT system

LEO

ID

10767

IT system

IUCLID4

ID

16558402024DIV750